Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains

Abstract

We describe a method to decipher the complex inter-relationships between metabolite production trends and gene expression events, and show how information gleaned from such studies can be applied to yield improved production strains. Genomic fragment microarrays were constructed for the Aspergillus terreus genome, and transcriptional profiles were generated from strains engineered to produce varying amounts of the medically significant natural product lovastatin. Metabolite detection methods were employed to quantify the polyketide-derived secondary metabolites lovastatin and (+)-geodin in broths from fermentations of the same strains. Association analysis of the resulting transcriptional and metabolic data sets provides mechanistic insight into the genetic and physiological control of lovastatin and (+)-geodin biosynthesis, and identifies novel components involved in the production of (+)-geodin, as well as other secondary metabolites. Furthermore, this analysis identifies specific tools, including promoters for reporter-based selection systems, that we employed to improve lovastatin production by A. terreus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of metabolic and transcriptional diversity.
Figure 2: Selection systems identify improved strains.

Similar content being viewed by others

References

  1. Masurekar, P.S. Therapeutic metabolites. Biotechnology 21, 241–301 (1992).

    CAS  PubMed  Google Scholar 

  2. Parekh, S., Vinci, V.A. & Strobel, R.J. Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol. 54, 287–301 (2000).

    Article  CAS  Google Scholar 

  3. Nielsen, J. The role of metabolic engineering in the production of secondary metabolites. Curr. Opin. Microbiol. 1, 330–336 (1998).

    Article  CAS  Google Scholar 

  4. Nielsen, J. Metabolic engineering. Appl. Microbiol. Biotechnol. 55, 263–283 (2001).

    Article  CAS  Google Scholar 

  5. Endo, A. Monacolin K. A new hypocholesterolemic agent produced by a Monascus species. J. Antibiot. 32, 852–854 (1979).

    Article  CAS  Google Scholar 

  6. Endo, A., Kuroda, M. & Tsujita, Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J. Antibiot. 29, 1346–1348 (1976).

    Article  CAS  Google Scholar 

  7. Endo, A., Kuroda, M. & Tanazawa, K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML236A and ML-236B fungal metabolites having hypocholesterolemic activity. FEBS Lett. 72, 323–326 (1976).

    Article  CAS  Google Scholar 

  8. Tanazawa, K. & Endo, A. Kinetic analysis of the reaction catalyzed by rat-liver 3-hydroxy-3-methylglutaryl-coenzyme-A reductase using two specific inhibitors. Eur. J. Biochem. 98, 195–201 (1979).

    Article  Google Scholar 

  9. Alberts, A.W. Discovery, biochemistry and biology of lovastatin. Am. J. Cardiol. 62, 10J–15J (1988).

    Article  CAS  Google Scholar 

  10. Endo, A. Hypocholesterolemic agents. Biotechnology 26, 301–320 (1994).

    CAS  PubMed  Google Scholar 

  11. Fujimoto, H., Flash, H. & Franck, B. Biosynthese der seco-anthrachinone geodin und dihydrogeodin aus emodin. Chem. Ber. 108, 1224–1228 (1975).

    Article  CAS  Google Scholar 

  12. Sankawa, U., Ebizuka, Y. & Shibata, S. Biosynthetic incorporation of emodin and emodinanthrone into the anthraquinoids of Penicillium brunneum and P. islandicum. Tetrahedron Lett. 2125–2128 (1973).

  13. Franck, B., Huper, F.,D.,G. & Erge, D. Seco-Anthrachinone nach einem neugefundenen Biosyntheseprinzip. Angew. Chem. 78, 752–753 (1976).

    Article  Google Scholar 

  14. Birch, A.J., Baldas, J., Hlubucek, F.B., Simpson, T.J. & Westerman, P.W. Biosynthesis of the fungal xanthone ravenelin. J. Chem. Soc. Perkin Trans. I 898–904 (1976).

  15. Kennedy, J. et al. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284, 1368–1372 (1999).

    Article  CAS  Google Scholar 

  16. Hutchinson, C.R. et al. Aspects of the biosynthesis of non-aromatic fungal polyketides by iterative polyketide synthases. Antonie Van Leeuwenhoek 78, 287–295 (2000).

    Article  CAS  Google Scholar 

  17. Bailey, C. & Arst, H.N., Jr. Carbon catabolite repression in Aspergillus nidulans. Eur. J. Biochem. 51, 573–577 (1975).

    Article  CAS  Google Scholar 

  18. Dowzer, C.E. & Kelly, J.M. Cloning of the creA gene from Aspergillus nidulans: a gene involved in carbon catabolite repression. Curr. Genet. 15, 457–459 (1989).

    Article  CAS  Google Scholar 

  19. Hicks, J.K., Yu, J.H., Keller, N.P. & Adams, T.H. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J. 16, 4916–4923 (1997).

    Article  CAS  Google Scholar 

  20. Tag, A. et al. G-protein signaling mediates differential production of toxic secondary metabolites. Mol. Microbiol. 38, 658–665 (2000).

    Article  CAS  Google Scholar 

  21. Agresti, A. Categorical Data Analysis. (John Wiley & Sons, New York; 1990).

    Google Scholar 

  22. Goodman, L.A. & Kruskal, W.H. Measures of association for cross classifications. J. Am. Stat. Assoc. 49, 732–764 (1954).

    Google Scholar 

  23. Curtis, R.F., Hassall, C.H. & Parry, D.R. The biosynthesis of phenols. XXIV. The conversion of the anthraquinone question into the benzophenone, sulochrin, in cultures of Aspergillus terreus. J. Chem. Soc. Perkin Trans. I 2, 240–244 (1972).

    Article  CAS  Google Scholar 

  24. Fujii, I., Iijima, H., Tsukita, S., Ebizuka, Y. & Sankawa, U. Purification and properties of dihydrogeodin oxidase from Aspergillus terreus. J. Biochem. (Tokyo) 101, 11–18 (1987).

    Article  CAS  Google Scholar 

  25. Gatenbeck, S. & Malmstrom, L. On the biosynthesis of sulochrin. Acta. Chem. Scand. 23, 3493–3497 (1969).

    Article  CAS  Google Scholar 

  26. Mayorga, M.E. & Timberlake, W.E. The developmentally regulated Aspergillus nidulans wA gene encodes a polypeptide homologous to polyketide and fatty acid synthases. Mol. Gen. Genet. 235, 205–212 (1992).

    Article  CAS  Google Scholar 

  27. Takano, Y. et al. Structural analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Mol. Gen. Genet. 249, 162–167 (1995).

    Article  CAS  Google Scholar 

  28. Tsai, H.F., Wheeler, M.H., Chang, Y.C. & Kwon-Chung, K.J. A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J. Bacteriol. 181, 6469–6477 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fulton, T.R., Ibrahim, N., Losada, M.C., Grzegorski, D. & Tkacz, J.S. A melanin polyketide synthase (PKS) gene from Nodulisporium sp. that shows homology to the pks1 gene of Colletotrichum lagenarium. Mol. Gen. Genet. 262, 714–720 (1999).

    Article  CAS  Google Scholar 

  30. Bingle, L.E.H., Simpson, T.J. & Lazarus, C.M. Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. Fungal Genet. Biol. 26, 209–223 (1999).

    Article  CAS  Google Scholar 

  31. Nicholson, T.P. et al. Design and utility of oligonucleotide gene probes for fungal polyketide synthases. Chem. Biol. 8, 157–178 (2001).

    Article  CAS  Google Scholar 

  32. Fujii, I. et al. Cloning of the polyketide synthase gene atX from Aspergillus terreus and its identification as the 6-methylsalicylic acid synthase gene by heterologous expression. Mol. Gen. Genet. 253, 1–10 (1996).

    Article  CAS  Google Scholar 

  33. Pazoutova, S., Linka, M., Storkova, S. & Schwab, H. Polyketide synthase gene pksM from Aspergillus terreus expressed during growth phase. Folia Microbiol. 42, 419–430 (1997).

    Article  CAS  Google Scholar 

  34. Christensen, B.E. & Kaasgaard, S. Methods for producing polypeptides in Aspergillus mutant cells. World Patent Application WO 00/39322 (2000).

  35. Drocourt, D., Calmels, T., Reynes, J.P., Baron, M. & Tiraby, G. Cassettes of the Streptoalloteichus hindustanus ble gene for transformation of lower and higher eukaryotes to phleomycin resistance. Nucleic Acids Res. 18, 4009 (1990).

    Article  CAS  Google Scholar 

  36. Good, P. Permutation tests: A practical guide to resampling methods for testing hypotheses (Springer-Verlag, New York, 2000).

  37. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).

    Article  CAS  Google Scholar 

  38. Royer, J.C. et al. Fusarium graminearum A 3/5 as a novel host for heterologous protein production. Biotechnology 13, 1479–1483 (1995).

    CAS  PubMed  Google Scholar 

  39. Szakacs, G., Morovjan, G. & Tengerdy, R.P. Production of lovastatin by a wild strain of Aspergillus terreus. Biotechnol. Lett. 20, 411–415 (1998).

    Article  CAS  Google Scholar 

  40. Buckingham, J. Dictionary of Natural Products on CD-ROM, vol. 10:1 (Chapman & Hall / CRC Press, Boca Raton FL, 2001).

    Google Scholar 

  41. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  42. Timberlake, W.E. Isolation of stage- and cell-specific genes from fungi. in Biology and Molecular Biology of Plant-Pathogen Interactions NATO ASI series H1 (ed. Bailey, J.) 343–357 (Springer-Verlag, Berlin Heidelberg, 1986).

    Chapter  Google Scholar 

  43. Kelly, J.M. & Hynes, M.J. Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J. 4, 475–479 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Brian Cali, Gerry Fink, and Todd Milne for critical comments on this manuscript. In addition, the authors would like to thank all members of the Precision Engineering program at Microbia, Inc. for their support and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin T. Madden.

Ethics declarations

Competing interests

This work was supported by Microbia, Inc. All authors are or have been employed by Microbia, Inc., and the authors have had the option to become shareholders in the company. The authors declare that a patent application has been filed that relates to the content of this manuscript.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Askenazi, M., Driggers, E., Holtzman, D. et al. Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21, 150–156 (2003). https://doi.org/10.1038/nbt781

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt781

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing