Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions

Abstract

We describe microarrays of oligosaccharides as neoglycolipids and their robust display on nitrocellulose. The arrays are sourced from glycoproteins, glycolipids, proteoglycans, polysaccharides, whole organs, or from chemically synthesized oligosaccharides. We show that carbohydrate-recognizing proteins single out their ligands not only in arrays of homogeneous oligosaccharides but also in arrays of heterogeneous oligosaccharides. Initial applications have revealed new findings, including: (i) among O-glycans in brain, a relative abundance of the Lewisx sequence based on N-acetyllactosamine recognized by anti-L5, and a paucity of the Lewisx sequence based on poly-N-acetyllactosamine recognized by anti-SSEA-1; (ii) insights into chondroitin sulfate oligosaccharides recognized by an antiserum and an antibody (CS-56) to chondroitin sulfates; and (iii) binding of the cytokine interferon-γ (IFN-γ) and the chemokine RANTES to sulfated sequences such as HNK-1, sulfo-Lewisx, and sulfo-Lewisa, in addition to glycosaminoglycans. The approach opens the way for discovering new carbohydrate-recognizing proteins in the proteome and for mapping the repertoire of carbohydrate recognition structures in the glycome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunological detection of oligosaccharides immobilized as NGLs on nitrocellulose and PVDF membranes.
Figure 2: Detection of epitope or ligand-bearing oligosaccharides on nitrocellulose membranes probed with carbohydrate-recognizing proteins.
Figure 3: Surveying the features of antigen-positive oligosaccharides within arrays derived from chondroitin sulfates A, B, and C.
Figure 4: Detection of the selective expression of carbohydrate differentiation antigens in brain O-glycan arrays.
Figure 5: Deconvolution by TLC, antibody binding, and mass spectrometry to examine the features of two distinct Lewisx -bearing oligosaccharides.

Similar content being viewed by others

References

  1. Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001).

    Article  CAS  Google Scholar 

  2. Feizi, T. Progress in deciphering the information content of the 'glycome'—a crescendo in the closing years of the millennium. Glycoconj. J. 17, 553–565 (2000).

    Article  CAS  Google Scholar 

  3. Crocker, P.R. & Varki, A. Siglecs in the immune system. Immunology 103, 137–145 (2001).

    Article  CAS  Google Scholar 

  4. Karlsson, K.A. Meaning and therapeutic potential of microbial recognition of host glycoconjugates. Mol. Microbiol. 29, 1–11 (1998).

    Article  CAS  Google Scholar 

  5. Kiessling, L.L. & Cairo, C.W. Hitting the sweet spot. Nat. Biotechnol. 20, 234–235 (2002).

    Article  CAS  Google Scholar 

  6. Wang, D., Liu, S., Trummer, B.J., Deng, C., & Wang, A. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20, 275–281 (2002).

    Article  CAS  Google Scholar 

  7. Houseman, B.T. & Mrksich, M. Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 9, 443–454 (2002).

    Article  CAS  Google Scholar 

  8. Tang, P.W., Gooi, H.C., Hardy, M., Lee, Y.C. & Feizi, T. Novel approach to the study of the antigenicities and receptor functions of carbohydrate chains of glycoproteins. Biochem. Biophys. Res. Commun. 132, 474–480 (1985).

    Article  CAS  Google Scholar 

  9. Stoll, M.S., Mizuochi, T., Childs, R.A. & Feizi, T. Improved procedure for the construction of neoglycolipids having antigenic and lectin-binding activities from reducing oligosaccharides. Biochem. J. 256, 661–664 (1988).

    Article  CAS  Google Scholar 

  10. Feizi, T., Stoll, M.S., Yuen, C.-T., Chai, W. & Lawson, A.M. Neoglycolipids: probes of oligosaccharide structure, antigenicity and function. Methods Enzymol. 230, 484–519 (1994).

    Article  CAS  Google Scholar 

  11. Stoll, M.S. et al. Fluorescent neoglycolipids: improved probes for oligosaccharide ligand discovery. Eur. J Biochem. 267, 1795–1804 (2000).

    Article  CAS  Google Scholar 

  12. Feizi, T. in Carbohydrate Bioengineering: Interdisciplinary Approaches (eds Teeri, T.T., Svensson, B., Gilbert, H.J. & Feizi, T.) 186–193 (The Royal Society of Chemistry, London, UK, 2002).

    Google Scholar 

  13. Yuen, C.-T. et al. Novel sulfated ligands for the cell adhesion molecule E-selectin revealed by the neoglycolipid technology among O-linked oligosaccharides on an ovarian cystadenoma glycoprotein. Biochemistry 31, 9126–9131 (1992).

    Article  CAS  Google Scholar 

  14. Chai, W., Feizi, T., Yuen, C.-T. & Lawson, A.M. Nonreductive release of O-linked oligosaccharides from mucin glycoproteins for structure/function assignments as neoglycolipids: application in the detection of novel ligands for E-selectin. Glycobiology 7, 861–872 (1997).

    Article  CAS  Google Scholar 

  15. Yuen, C.-T. et al. Brain contains HNK-1 immunoreactive O-glycans of the sulfoglucuronyl lactosamine series that terminate in 2-linked or 2,6-linked hexose (mannose). J. Biol. Chem. 272, 8924–8931 (1997).

    Article  CAS  Google Scholar 

  16. Chai, W. et al. High prevalence of 2-mono- and 2,6-di-substituted Manol-terminating sequences among O-glycans released from brain glycopeptides by reductive alkaline hydrolysis. Eur. J. Biochem. 263, 879–888 (1999).

    Article  CAS  Google Scholar 

  17. Chai, W., Yuen, C.-T., Feizi, T. & Lawson, A.M. Core-branching pattern and sequence analysis of mannitol-terminating oligosaccharides by neoglycolipid technology. Anal. Biochem. 270, 314–322 (1999).

    Article  CAS  Google Scholar 

  18. Leteux, C., Chai, W., Nagai, K., Lawson, A.M. & and Feizi, T. 10E4 Antigen of scrapie lesions contains an unusual nonsulfated heparan motif. J. Biol. Chem. 276, 12539–12545 (2001).

    Article  CAS  Google Scholar 

  19. Chou, D.K.H. et al. Structure of sulfated glucuronyl glycolipids in the nervous system reacting with HNK-1 antibody and some IgM paraproteins in neuropathy. J. Biol. Chem. 261, 11717–11725 (1986).

    CAS  PubMed  Google Scholar 

  20. Gooi, H.C. et al. Stage specific embryonic antigen SSEA-1 involves α1-3 fucosylated type 2 blood group chains. Nature 292, 156–158 (1981).

    Article  CAS  Google Scholar 

  21. Streit, A. et al. The Lex, carbohydrate sequence is recognized by antibody to L5, a functional antigen in early neural development. J. Neurochem. 66, 834–844 (1996).

    Article  CAS  Google Scholar 

  22. Brown, A. et al. A monoclonal antibody against human colonic adenoma recognizes difucosylated Type-2 blood group chains. Biosci. Reps. 3, 163–170 (1983).

    Article  CAS  Google Scholar 

  23. Avnur, Z. & Geiger, B. Immunocytochemical localization of native chondroitin-sulfate in tissues and cultured cells using specific monoclonal antibody. Cell 38, 811–822 (1984).

    Article  CAS  Google Scholar 

  24. Feizi, T. in Mammalian Carbohydrate Recognition Systems. Results and Problems in Cell Differentiation, Vol. 33 (ed. Crocker, P.R.) 201–223 (Springer-Verlag, Berlin Heidelberg, 2001).

    Book  Google Scholar 

  25. Hurt-Camejo, E. et al. CD44, a cell surface chondroitin sulfate proteoglycan, mediates binding of interferon-γ and some of its biological effects on human vascular smooth muscle cells. J. Biol. Chem. 274, 18957–18964 (1999).

    Article  CAS  Google Scholar 

  26. Hirose, J., Kawashima, H., Yoshie, O., Tashiro, K. & Miyasaka, M. Versican interacts with chemokines and modulates cellular responses. J. Biol. Chem. 276, 5228–5234 (2001).

    Article  CAS  Google Scholar 

  27. Hounsell, E.F., Gooi, H.C. & Feizi, T. The monoclonal antibody anti-SSEA-1 discriminates between fucosylated Type 1 and Type 2 blood group chains. FEBS Lett. 131, 279–282 (1981).

    Article  CAS  Google Scholar 

  28. Liang, R. et al. Parallel synthesis and screening of a solid phase carbohydrate library. Science 274, 1520–1522 (1996).

    Article  CAS  Google Scholar 

  29. Charych, D.H., Nagy, J.O., Spevak, W. & Bednarski, M.D. Direct colorimetric detection of a receptor–ligand interaction by a polymerized bilayer assembly. Science 261, 585–588 (1993).

    Article  CAS  Google Scholar 

  30. Crocker, P.R. & Feizi, T. Carbohydrate recognition systems: functional triads in cell–cell interactions. Curr. Opin. Struct. Biol. 6, 679–691 (1996).

    Article  CAS  Google Scholar 

  31. Ghosh, P., Bachhawat, B.K. & Surolia, A. Synthetic glycolipids: interaction with galactose-binding lectin and hepatic cells. Arch. Biochem. Biophys. 206, 454–457 (1981).

    Article  CAS  Google Scholar 

  32. Surolia, A., Bachhawat, B.K. & Podder, S.K. Interaction between lectin from Ricinus communis and liposomes containing gangliosides. Nature 257, 802–804 (1975).

    Article  CAS  Google Scholar 

  33. Galustian, C. et al. Synergistic interactions of the two classes of ligand, sialyl-Lewisa/x fuco-oligosaccharides and short sulpho-motifs, with the P- and L- selectins: implications for therapeutic inhibitor designs. Immunology 105, 350–359 (2002).

    Article  CAS  Google Scholar 

  34. Srinivas, O., Mitra, N., Surolia, A. & Jayaraman, N. Photoswitchable multivalent sugar ligands: synthesis, isomerization, and lectin binding studies of azobenzene-glycopyranoside derivatives. J. Am. Chem. Soc. 124, 2124–2125 (2002).

    Article  CAS  Google Scholar 

  35. Galustian, C. et al. Valency dependent patterns of reactivity of human L-selectin towards sialyl and sulfated oligosaccharides of Lea and Lex types: relevance to anti-adhesion therapeutics. Biochemistry 36, 5260–5266 (1997).

    Article  CAS  Google Scholar 

  36. Stoll, M.S., Hounsell, E.F., Lawson, A.M., Chai, W. & Feizi, T. Microscale sequencing of O-linked oligosaccharides using mild periodate oxidation of alditols, coupling to phospholipid and TLC-MS analysis of the resulting neoglycolipids. Eur. J. Biochem. 189, 499–507 (1990).

    Article  CAS  Google Scholar 

  37. Chai, W., Stoll, M.S., Cashmore, G.C. & Lawson, A.M. Specificity of mild periodate oxidation of oligosaccharide-alditol relevance to the analysis of the core-branching pattern of O-linked glycoprotein oligosaccharides. Carbohydr. Res. 239, 107–115 (1993).

    Article  CAS  Google Scholar 

  38. Chai, W., Kogelberg, H. & Lawson, A.M. Generation and structural characterization of a range of unmodified chondroitin sulfate oligosaccharide fragments. Anal. Biochem. 237, 88–102 (1996).

    Article  CAS  Google Scholar 

  39. Galustian, C. et al. L-selectin interactions with novel mono- and multisulfated Lewisx sequences in comparison with the potent ligand 3′-sulfated Lewisa. J. Biol. Chem. 274, 18213–18217 (1999).

    Article  CAS  Google Scholar 

  40. Loveless, R.W., Floyd-O'Sullivan, G., Raynes, J.G. & Feizi, T. Human serum amyloid P is a multispecific adhesive protein whose ligands include 6-phosphorylated mannose and the 3-sulphated saccharides galactose, N-acetylgalactosamine and glucuronic acid. EMBO J. 11, 813–819 (1992).

    Article  CAS  Google Scholar 

  41. Hasegawa, A., Ando, T., Kameyama, A. & Kiso, M. Stereocontrolled synthesis of sialyl Lewis X ceramide consisting of pentasaccharide recognized selectin family. Carbohydr. Res. 230, c1–c5 (1992).

    Article  CAS  Google Scholar 

  42. Lubineau, A., Le-Gallic, J. & Lemoine, R. First synthesis of the 3′-sulfated Lewis(a) pentasaccharide, the most potent human E-selectin ligand so far. Bioorg. Med. Chem. 2, 1143–1151 (1994).

    Article  CAS  Google Scholar 

  43. Lubineau, A., Auge, C., Le Goff, N. & Le Narvor, C. Chemoenzymatic synthesis of a 3IV,6III-disulfated Lewis(x) pentasaccharide, a candidate ligand for human L-selectin. Carbohydr. Res. 305, 501–509 (1997).

    Article  CAS  Google Scholar 

  44. Lubineau, A., Alais, J. & Lemoine, R. Synthesis of 3′- and 6'-monosulfated and 3',6'-disulfated Lewis x pentasaccharide, candidate ligands for human L-selectin. J. Carbohydr. Chem. 19, 151–169 (2000).

    Article  CAS  Google Scholar 

  45. Komba, S., Ishida, H., Kiso, M. & Hasegawa, A. Synthesis and biological activities of three sulfated sialyl Le(x) ganglioside analogues for clarifying the real carbohydrate ligand structure of L-selection. Bioorg. Med. Chem. 4, 1833–1847 (1996).

    Article  CAS  Google Scholar 

  46. Galustian, C. et al. Sialyl-Lewisx sequence 6-O-sulfated at N-acetylglucosamine rather than at galactose is the preferred ligand for L-selectin and de-N-acetylation of the sialic acid enhances the binding strength. Biochem. Biophys. Res. Commun. 240, 748–751 (1997).

    Article  CAS  Google Scholar 

  47. Isogai, Y., Kawase, T., Ishida, H., Kiso, M. & Hasegawa, A. Total synthesis of sulfated glucuronyl paraglobosides. J. Carbohydr. Chem. 15, 1001–1023 (1996).

    Article  CAS  Google Scholar 

  48. Chai, W., Cashmore, G.C., Carruthers, R.A., Stoll, M.S. & Lawson, A.M. Optimal procedure for combined high-performance thin-layer chromatography/high-sensitivity liquid secondary ion mass spectrometry. Biol. Mass Spectrom. 20, 169–178 (1991).

    Article  CAS  Google Scholar 

  49. Bertolotto, A., Palmucci, L., Gagliano, A., Mongini, T. & Tarone, G. Immunohistochemical localization of chondroitin sulfate in normal and pathological human muscle. J. Neurol. Sci. 73, 233–244 (1986).

    Article  CAS  Google Scholar 

  50. Smith, P.L. et al. Expression of the α(1-3)fucosyltransferase Fuc-TVII in lymphoid aggregate high endothelial venules correlates with expression of L-selectin ligands. J. Biol. Chem. 271, 8250–8259 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by a program grant G9601454 from the UK Medical Research Council. We thank D. Wang and W. Loveless for stimulating discussions, C. Herbert for technical support, and C. Kelly for assistance in compiling the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ten Feizi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukui, S., Feizi, T., Galustian, C. et al. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat Biotechnol 20, 1011–1017 (2002). https://doi.org/10.1038/nbt735

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt735

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing