Letter | Published:

Microscale culture of human liver cells for drug development

Nature Biotechnology volume 26, pages 120126 (2008) | Download Citation

Abstract

Tissue function depends on hierarchical structures extending from single cells (10 μm) to functional subunits (100 μm–1 mm) that coordinate organ functions. Conventional cell culture disperses tissues into single cells while neglecting higher-order processes. The application of semiconductor-driven microtechnology in the biomedical arena now allows fabrication of microscale tissue subunits that may be functionally improved1 and have the advantages of miniaturization2. Here we present a miniaturized, multiwell culture system for human liver cells with optimized microscale architecture that maintains phenotypic functions for several weeks. The need for such models is underscored by the high rate of pre-launch and post-market attrition of pharmaceuticals due to liver toxicity3. We demonstrate utility through assessment of gene expression profiles, phase I/II metabolism, canalicular transport, secretion of liver-specific products and susceptibility to hepatotoxins. The combination of microtechnology and tissue engineering may enable development of integrated tissue models in the so-called 'human on a chip'4.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Microfabrication in biology and medicine. Annu. Rev. Biomed. Eng. 1, 401–425 (1999).

  2. 2.

    & Engineering tissues for in vitro applications. Curr. Opin. Biotechnol. 17, 524–531 (2006).

  3. 3.

    Idiosyncratic drug hepatotoxicity. Nat. Rev. Drug Discov. 4, 489–499 (2005).

  4. 4.

    & Incorporation of 3T3–L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol. Prog. 20, 590–597 (2004).

  5. 5.

    , , , & Geometric control of cell life and death. Science 276, 1425–1428 (1997).

  6. 6.

    , , & Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 13, 1883–1900 (1999).

  7. 7.

    et al. Making better drugs: Decision gates in non-clinical drug development. Nat. Rev. Drug Discov. 2, 542–553 (2003).

  8. 8.

    et al. New hepatocyte in vitro systems for drug metabolism: metabolic capacity and recommendations for application in basic research and drug development, standard operation procedures. Drug Metab. Rev. 35, 145–213 (2003).

  9. 9.

    Liver cell models in in vitro toxicology. Environ. Health Perspect. 106 Suppl 2, 511–532 (1998).

  10. 10.

    Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation. Eur. J. Pharm. Sci. 13, 343–368 (2001).

  11. 11.

    et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr. Drug Metab. 6, 569–591 (2005).

  12. 12.

    et al. Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab. Rev. 39, 159–234 (2007).

  13. 13.

    , , & Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab. Dispos. 32, 699–706 (2004).

  14. 14.

    , & Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties. Drug Metab. Dispos. 31, 1035–1042 (2003).

  15. 15.

    , , , & Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

  16. 16.

    , , , & Exploring interactions between rat hepatocytes and nonparenchymal cells using gene expression profiling. Hepatology 40, 545–554 (2004).

  17. 17.

    et al. Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab. Dispos. 31, 421–431 (2003).

  18. 18.

    et al. Isolated human hepatocytes in culture display markedly different gene expression patterns depending on attachment status. Toxicol. In Vitro 17, 693–701 (2003).

  19. 19.

    et al. Gene expression in human hepatocytes in suspension after isolation is similar to the liver of origin, is not affected by hepatocyte cold storage and cryopreservation, but is strongly changed after hepatocyte plating. Drug Metab. Dispos. 34, 870–879 (2006).

  20. 20.

    , , , & Cytochrome P-450 mRNA expression in human liver and its relationship with enzyme activity. Arch. Biochem. Biophys. 393, 308–315 (2001).

  21. 21.

    Hepatotoxicity of thiazolidinediones. Expert Opin. Drug Saf. 2, 581–586 (2003).

  22. 22.

    The effect of probenecid on paracetamol metabolism and pharmacokinetics. Eur. J. Clin. Pharmacol. 45, 551–553 (1993).

  23. 23.

    Apparent potentiation of hepatotoxicity from small doses of acetaminophen by phenobarbital. Ann. Intern. Med. 101, 403 (1984).

  24. 24.

    et al. The coculture: a system for studying the regulation of liver differentiation/proliferation activity and its control. Cell Biol. Toxicol. 13, 235–242 (1997).

  25. 25.

    et al. Microstructured scaffolds for liver tissue cultures of high cell density: morphological and biochemical characterization of tissue aggregates. J. Cell. Biochem. 95, 243–255 (2005).

  26. 26.

    , & Advances in bioartificial liver devices. Hepatology 34, 447–455 (2001).

  27. 27.

    , , , & A stereotypic, transplantable liver tissue-culture system. Appl. Biochem. Biotechnol. 54, 65–91 (1995).

  28. 28.

    et al. Survival and function of rat hepatocytes cocultured with nonparenchymal cells or sinusoidal endothelial cells on biodegradable polymers under flow conditions. J. Pediatr. Surg. 35, 1287–1290 (2000).

  29. 29.

    , , & Liver-specific functional studies in a microfluidic array of primary Mammalian hepatocytes. Anal. Chem. 78, 4291–4298 (2006).

  30. 30.

    et al. Three-dimensional co-culture of primary human liver cells in bioreactors for in vitro drug studies: effects of the initial cell quality on the long-term maintenance of hepatocyte-specific functions. Altern. Lab. Anim. 30, 525–538 (2002).

Download references

Acknowledgements

We are grateful to Emanuele Ostuni and Surface Logix, Inc. for design and fabrication of the PDMS stencils, Howard Green for providing 3T3-J2 fibroblasts, Jennifer Koh for assistance with pilot studies, David Eddington for assistance with microfabrication, Taylor Sittler for helpful discussions regarding compound selection, Elise Liu for assistance with biochemical assays and Sandra March for assistance with RNA isolation. Funding was generously provided by a National Science Foundation (NSF) graduate fellowship (S.R.K.), NSF CAREER, National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases, Deshpande Center at MIT, the David and Lucile Packard Foundation, the Massachusetts Technology Transfer Center, and the Center for Environmental Health Sciences at MIT.

Author information

Affiliations

  1. Division of Health Sciences and Technology, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E19-502D, Cambridge, Massachusetts 02139, USA.

    • Salman R Khetani
    •  & Sangeeta N Bhatia
  2. Division of Medicine, Brigham & Women's Hospital, Boston, Massachusetts 02115, USA.

    • Sangeeta N Bhatia

Authors

  1. Search for Salman R Khetani in:

  2. Search for Sangeeta N Bhatia in:

Contributions

S.R.K. designed and performed the experiments, analyzed the data and wrote the manuscript. S.N.B. designed the experiments, analyzed the data and wrote the manuscript.

Competing interests

S.R.K. and S.N.B. have stock in Hepregen.

Corresponding author

Correspondence to Sangeeta N Bhatia.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–5, Supplementary Table 1, Supplementary Methods

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nbt1361

Further reading