Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin

Abstract

For complex diseases in which multiple mediators contribute to overall disease pathogenesis by distinct or redundant mechanisms, simultaneous blockade of multiple targets may yield better therapeutic efficacy than inhibition of a single target. However, developing two separate monoclonal antibodies for clinical use as combination therapy is impractical, owing to regulatory hurdles and cost. Multi-specific, antibody-based molecules have been investigated; however, their therapeutic use has been hampered by poor pharmacokinetics, stability and manufacturing feasibility. Here, we describe a generally applicable model of a dual-specific, tetravalent immunoglobulin G (IgG)-like molecule—termed dual-variable-domain immunoglobulin (DVD-Ig)—that can be engineered from any two monoclonal antibodies while preserving activities of the parental antibodies. This molecule can be efficiently produced from mammalian cells and exhibits good physicochemical and pharmacokinetic properties. Preclinical studies of a DVD-Ig protein in an animal disease model demonstrate its potential for therapeutic application in human diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Design, generation and characterization of an anti–IL-12/IL-18 dual-variable-domain immunoglobulin (1D4.1-325 DVD-Ig) protein.
Figure 2: Pharmacokinetic profile of 1D4.1-325 DVD-Ig protein in rats.
Figure 3: In vivo activity of 1D4.1-325 DVD-Ig protein in a human PBMC-engrafted SCID mouse model.
Figure 4: Anti–mIL-1α/β 10G11-9H10 DVD-Ig protein shows comparable efficacy to monospecific anti–IL-1α and anti–IL-1β antibody combinations in collagen-induced arthritis.

References

  1. 1

    van den Berg, W.B., Joosten, L.A., Helsen, M. & van de Loo, F.A. Amelioration of established murine collagen-induced arthritis with anti-IL-1 treatment. Clin. Exp. Immunol. 95, 237–243 (1994).

    CAS  Article  Google Scholar 

  2. 2

    Maruotti, N., Cantatore, F.P., Crivellato, E., Vacca, A. & Ribatti, D. Angiogenesis in rheumatoid arthritis. Histol. Histopathol. 21, 557–566 (2006).

    CAS  PubMed  Google Scholar 

  3. 3

    Uno, T. et al. Eradication of established tumors in mice by a combination antibody-based therapy. Nat. Med. 12, 693–698 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Strauss, S.J. et al. Multicenter phase II trial of immunotherapy with the humanized anti-CD22 antibody, epratuzumab, in combination with rituximab, in refractory or recurrent non-Hodgkin's lymphoma. J. Clin. Oncol. 24, 3880–3886 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Holliger, P. & Hudson, P.J. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23, 1126–1136 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Kriangkum, J., Xu, B., Nagata, L.P., Fulton, R.E. & Suresh, M.R. Bispecific and bifunctional single chain recombinant antibodies. Biomol. Eng. 18, 31–40 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Marvin, J.S. & Zhu, Z. Recombinant approaches to IgG-like bispecific antibodies. Acta Pharmacol. Sin. 26, 649–658 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Lacy, S. et al. IL-12/P40 Binding Proteins. Patent Application Number: WO2006US25584A (2007).

  9. 9

    Ghayur, T. et al. IL-18 Binding Proteins. United States Patent WO2004US37971A (2005).

  10. 10

    Wurm, F.M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22, 1393–1398 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Lattenmayer, C. et al. Protein-free transfection of CHO host cells with an IgG-fusion protein: selection and characterization of stable high producers and comparison to conventionally transfected clones. Biotechnol. Bioeng. 96, 1118–1126 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Lattenmayer, C. et al. Characterisation of recombinant CHO cell lines by investigation of protein productivities and genetic parameters. J. Biotechnol. 128, 716–725 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Salfeld, J. et al. Human antibodies that bind human IL-12 and methods for producing. US Patent 6914128 (2005).

  14. 14

    Lauw, F.N. et al. Proinflammatory effects of IL-10 during human endotoxemia. J. Immunol. 165, 2783–2789 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Micallef, M.J. et al. Interferon-gamma-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-gamma production. Eur. J. Immunol. 26, 1647–1651 (1996).

    CAS  Article  Google Scholar 

  16. 16

    Yu, J.J., Tripp, C.S. & Russell, J.H. Regulation and phenotype of an innate Th1 cell: role of cytokines and the p38 kinase pathway. J. Immunol. 171, 6112–6118 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Neumann, D. et al. Injection of IL-12- and IL-18-encoding plasmids ameliorates the autoimmune pathology of MRL/Mp-Tnfrsf6lpr mice: synergistic effect on autoimmune symptoms. Int. Immunol. 18, 1779–1787 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Tary-Lehmann, M., Saxon, A. & Lehmann, P.V. The human immune system in hu-PBL-SCID mice. Immunol. Today 16, 529–533 (1995).

    CAS  Article  Google Scholar 

  19. 19

    Joosten, L.A., Helsen, M.M., van de Loo, F.A. & van den Berg, W.B. Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice. A comparative study using anti-TNF alpha, anti-IL-1 alpha/beta, and IL-1Ra. Arthritis Rheum. 39, 797–809 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Dinarello, C.A., Muegge, K. & Durum, S.K. Measurement of soluble and membrane-bound interleukin 1 using a fibroblast bioassay. In Current Protocols in Immunology 6.2.1–6.2.7 (Wiley, Hoboken, New Jersey, USA, 2000).

  21. 21

    Sandin, S., Ofverstedt, L.G., Wikstrom, A.C., Wrange, O. & Skoglund, U. Structure and flexibility of individual immunoglobulin G molecules in solution. Structure 12, 409–415 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Lu, D. et al. A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J. Biol. Chem. 280, 19665–19672 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Shen, J. et al. Single variable domain antibody as a versatile building block for the construction of IgG-like bispecific antibodies. J. Immunol. Methods 318, 65–74 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Marvin, J.S. & Zhu, Z. Bispecific antibodies for dual-modality cancer therapy: killing two signaling cascades with one stone. Curr. Opin. Drug Discov. Devel. 9, 184–193 (2006).

    CAS  PubMed  Google Scholar 

  25. 25

    Arend, W.P. Cytokines and cellular interactions in inflammatory synovitis. J. Clin. Invest. 107, 1081–1082 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Kufer, P., Lutterbuse, R. & Baeuerle, P.A. A revival of bispecific antibodies. Trends Biotechnol. 22, 238–244 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Clark, E.A., Shu, G. & Ledbetter, J.A. Role of the Bp35 cell surface polypeptide in human B-cell activation. Proc. Natl. Acad. Sci. USA 82, 1766–1770 (1985).

    CAS  Article  Google Scholar 

  28. 28

    Kung, P., Goldstein, G., Reinherz, E.L. & Schlossman, S.F. Monoclonal antibodies defining distinctive human T cell surface antigens. Science 206, 347–349 (1979).

    CAS  Article  Google Scholar 

  29. 29

    Arndt, M. & Krauss, J. Bispecific diabodies for cancer therapy. Methods Mol. Biol. 207, 305–321 (2003).

    CAS  PubMed  Google Scholar 

  30. 30

    Peipp, M. & Valerius, T. Bispecific antibodies targeting cancer cells. Biochem. Soc. Trans. 30, 507–511 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Kontermann, R.E. Recombinant bispecific antibodies for cancer therapy. Acta Pharmacol. Sin. 26, 1–9 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Cheong, H.S., Chang, J.S., Park, J.M. & Byun, S.M. Affinity enhancement of bispecific antibody against two different epitopes in the same antigen. Biochem. Biophys. Res. Commun. 173, 795–800 (1990).

    CAS  Article  Google Scholar 

  33. 33

    Madrenas, J. et al. Conversion of CTLA-4 from inhibitor to activator of T cells with a bispecific tandem single-chain Fv ligand. J. Immunol. 172, 5948–5956 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Bonardi, M.A. et al. Delivery of saporin to human B-cell lymphoma using bispecific antibody: targeting via CD22 but not CD19, CD37, or immunoglobulin results in efficient killing. Cancer Res. 53, 3015–3021 (1993).

    CAS  PubMed  Google Scholar 

  35. 35

    Vasu, C., Gorla, S.R., Prabhakar, B.S. & Holterman, M.J. Targeted engagement of CTLA-4 prevents autoimmune thyroiditis. Int. Immunol. 15, 641–654 (2003).

    CAS  Article  Google Scholar 

  36. 36

    Khaw, B.A., Rammohan, R. & Abu-Taha, A. Bispecific enzyme-linked signal-enhanced immunoassay with subattomole sensitivity. Assay Drug Dev. Technol. 3, 319–327 (2005).

    CAS  Article  Google Scholar 

  37. 37

    Kaufman, R.J. et al. Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells. Mol. Cell. Biol. 5, 1750–1759 (1985).

    CAS  Article  Google Scholar 

  38. 38

    D'Andrea, A. et al. Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J. Exp. Med. 176, 1387–1398 (1992).

    CAS  Article  Google Scholar 

  39. 39

    Konishi, K. et al. A simple and sensitive bioassay for the detection of human interleukin-18/interferon-gamma-inducing factor using human myelomonocytic KG-1 cells. J. Immunol. Methods 209, 187–191 (1997).

    CAS  Article  Google Scholar 

  40. 40

    Joosten, L.A., Helsen, M.M. & van den Berg, W.B. Accelerated onset of collagen-induced arthritis by remote inflammation. Clin. Exp. Immunol. 97, 204–211 (1994).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Gerald Carson, Yun Zhang, Liqiang Zhou, Randolph Huelsman, Limary Medina, Michelle Babineau, Shaona Fang, Wendy Gion, Cheryl Thibault, Baofu Ni, Adriana Bajardi-Taccioli, and Elizabeth O'Connor of Abbott Bioresearch Center, for their technical contributions; Jochen Salfeld, Trudi Veldman, Andrew Goodearl, Lisa Olson, Lisa Schopf, Susan Lacy, Robert Hickman, Catherine Tripp, and Peter Isakson of Abbott Bioresearch Center for their support. We also acknowledge, with their permission, Lori Lush, PharmD, of JK Associates, Inc., and Michael Nissen, ELS, of Abbott Laboratories, for their editing and formatting assistance in the development of this manuscript. Type II porcine collagen (lyophilized) was obtained from Marie Griffiths at the University of Utah.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chengbin Wu.

Ethics declarations

Competing interests

This study was supported by Abbott Laboratories, Abbott Park, Illinois. The authors are employees of Abbott Laboratories and may own Abbott stock or stock options.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–3 (PDF 400 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, C., Ying, H., Grinnell, C. et al. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 25, 1290–1297 (2007). https://doi.org/10.1038/nbt1345

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing