Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Myogenic expression of an injectable protease-resistant growth hormone–releasing hormone augments long-term growth in pigs

Abstract

Ectopic expression of a new serum protease-resistant porcine growth hormone–releasing hormone, directed by an injectable muscle-specific synthetic promoter plasmid vector (pSP-HV-GHRH), elicits growth in pigs. A single 10 mg intramuscular injection of pSP-HV-GHRH DNA followed by electroporation in three-week-old piglets elevated serum GHRH levels by twofold to fourfold, enhanced growth hormone secretion, and increased serum insulin-like growth factor-I by threefold to sixfold over control pigs. After 65 days the average body weight of the pigs injected with pSP-HV-GHRH was ~37% greater than the placebo-injected controls and resulted in a significant reduction in serum urea concentration, indicating a decrease in amino acid catabolism. Evaluation of body composition indicated a uniform increase in mass, with no organomegaly or associated pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GHRH superactive analogs increase GH secretagogue activity and stability.
Figure 2: Single injections of GHRH myogenic expression vectors in vivo increases porcine GHRH, GH, and IGF-I serum levels over two months.
Figure 3: Myogenic GHRH expression vectors enhance pig growth.

Similar content being viewed by others

References

  1. Frohman, L.A., Downs, T.R., Chomczynski, P. Regulation of growth hormone secretion. Front. Neuroendocrinol.. 13, 344–405 (1992).

    CAS  PubMed  Google Scholar 

  2. Thorner, M.O., Chapman, I.M., Gaylinn, B.D., Pezzoli, S.S. & Hartman, M.L. Growth hormone-releasing hormone and growth hormone releasing peptide as therapeutic agents to enhance growth hormone secretion in disease and aging. Recent. Prog. Horm. Res.. 52, 215–244 ( 1997).

    CAS  PubMed  Google Scholar 

  3. Parks, J.S., Pfaffle, R.W., Brown, M.R., Abdul-Latif, H. & Meacham, L.R. in Growth hormone deficiency (ed. Weintraub, B.D.) 473–490 (Raven Press, New York; 1995).

    Google Scholar 

  4. Jacobs, P.A. et al. A cytogenetic and molecular reappraisal of a series of patients with Turner's syndrome. Ann. Hum. Genet. 54, 209 –223 (1990).

    Article  CAS  Google Scholar 

  5. Tanaka, H., Kubo, T., Yamate, T., Ono, T., Kanzaki, S. & Seino, Y. Effect of growth hormone therapy in children with achondroplasia: growth pattern, hypothalamic-pituitary function, and genotype. Eur. J. Endocrinol.. 138, 275–280 (1998).

    Article  CAS  Google Scholar 

  6. Savage, M.O., Beattie, R.M., Camacho-Hubner, C., Walker-Smith, J.A. & Sanderson, I.R. Growth in Crohn's disease. Acta Paediatr. Scand. Suppl. 428, 89–92 (1999).

    Article  Google Scholar 

  7. Albanese, A. & Stanhope, R. GH treatment induces sustained catch-up growth in children with intrauterine growth retardation: 7-year results. Horm. Res. 48, 173–177 (1997).

    Article  CAS  Google Scholar 

  8. Benfield, M.R. & Kohaut, E.C. Growth hormone is safe in children after renal transplantation. J. Pediatr. 131, S28–S31 (1997).

    Article  CAS  Google Scholar 

  9. Gesundheit, N. & Alexander, J.K. in Endocrine therapy with recombinant hormones and growth factors (ed. Weintraub, B.D.) 491– 507 (Raven Press, New York; 1995).

    Google Scholar 

  10. Veldhuis, J.D., Iranmanesh, A. & Weltman, A. Elements in the pathophysiology of diminished growth hormone (GH) secretion in aging humans. Endocrine. 7 , 41–48 (1997).

    Article  CAS  Google Scholar 

  11. Heptulla, R.A. et al. Decreased insulin sensitivity and compensatory hyperinsulinemia after hormone treatment in children with short stature. J. Clin. Endocrinol. & Metab. 82, 3234– 3238 (1997).

    CAS  Google Scholar 

  12. Watkins, S.L. Bone disease in patients receiving growth hormone. Kidney Int. Suppl. 53, S126–S127 ( 1996).

    CAS  PubMed  Google Scholar 

  13. Lapierre, H. et al. Effect of human growth hormone-releasing factor and(or) thyrotropin-releasing factor on growth, carcass composition, diet digestibility, nutrient balance, and plasma constituents in dairy calves. J. Anim. Sci. 69, 587–598 (1991).

    Article  CAS  Google Scholar 

  14. Etherton, T.D. & Bauman, D.E. Biology of somatotropin in growth and lactation of domestic animals. Physiol. Rev. 78, 745–761 (1998).

    Article  CAS  Google Scholar 

  15. Etherton, T.D. et al. Stimulation of pig growth performance by porcine growth hormone and growth hormone-releasing factor. J. Anim. Sci. 63, 1389–1399 (1986).

    Article  CAS  Google Scholar 

  16. Corpas, E., Harman, S.M., Pineyro, M.A., Roberson, R. & Blackman, M.R. Continuous subcutaneous infusions of growth hormone (GH) releasing hormone 1-44 for 14 days increase GH and insulin-like growth factor-I levels in old men. J. Clin. Endocrinol. Metab. 76, 134–138 ( 1993).

    CAS  PubMed  Google Scholar 

  17. Thorner, M.O. et al. Extrahypothalamic growth-hormone-releasing factor (GRF) secretion is a rare cause of acromegaly: plasma GRF levels in 177 acromegalic patients J. Clin. Endocrinol. Metab. 59, 846– 849 (1984).

    Article  CAS  Google Scholar 

  18. Muramatsu, T., Nakamura, A. & Park, H.M. In vivo electroporation: a powerful and convenient means of nonviral gene transfer to tissues of living animals. Int. J. Mol. Med.. 1, 55–62 (1998).

    CAS  PubMed  Google Scholar 

  19. Davis, H.L., Whalen, R.G. & Demeneix, B.A. Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression. Hum. Gene Ther. 4, 151–159 (1993).

    Article  Google Scholar 

  20. Tripathy, S.K. et al. Long-term expression of erythropoietin in the systemic circulation of mice after intramuscular injection of a plasmid DNA vector. Proc. Natl. Acad. Sci. USA. 93, 10876– 10880 (1996).

    Article  CAS  Google Scholar 

  21. Li, X., Eastman, E.M., Schwartz, R.J. & Draghia-Akli, R. Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nat. Biotechnol. 17, 241– 245. (1999).

    Article  CAS  Google Scholar 

  22. Mir, L.M. et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl. Acad. Sci. USA. 96, 4262– 4267 (1999).

    Article  CAS  Google Scholar 

  23. Frohman, L.A. et al. Metabolic clearance and plasma disappearance rates of human pancreatic tumor growth hormone releasing factor in man. J. Clin. Invest.. 73, 1304–1311 ( 1984).

    Article  CAS  Google Scholar 

  24. Su, C.M. et al. In vitro stability of growth hormone releasing factor (GRF) analogs in porcine plasma. Horm. Metab. Res. 23, 15– 21 (1991).

    Article  CAS  Google Scholar 

  25. Campbell, R.M. et al. GRF analogs and fragments: correlation between receptor binding, activity and structure. Peptides. 12, 569 –574 (1991).

    Article  CAS  Google Scholar 

  26. Kubiak, T.M., Kelly, C.R. & Krabill, L.F. In vitro metabolic degradation of a bovine growth hormone-releasing factor analog Leu27-bGRF(1-29)NH2 in bovine and porcine plasma. Correlation with plasma dipeptidylpeptidase activity. Drug Metab. Dispos. 17, 393–397 (1989).

    CAS  PubMed  Google Scholar 

  27. Martin, R.A., Cleary, D.L., Guido, D.M., Zurcher-Neely, H.A., Kubiak, T.M. Dipeptidyl peptidase IV (DPP-IV) from pig kidney cleaves analogs of bovine growth hormone-releasing factor (bGRF) modified at position 2 with Ser, Thr or Val. Extended DPP-IV substrate specificity? Biochim. Biophys. Acta. 1164, 252–260 (1993).

    Article  CAS  Google Scholar 

  28. Aihara, H. & Miyazaki, J. Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16, 867– 870 (1998).

    Article  CAS  Google Scholar 

  29. Ellis, K.J. & Eastman J.D. In vivo methods, models, and assessment. Basic Life Sciences. Vol. 60 (ed. Chu, E.H.Y.) 153–397 (Plenum Press, New York; 1993 ).

    Google Scholar 

  30. Frohman, L.A., Downs, T.R., Heimer, E.P. & Felix, A.M. Dipeptidylpeptidase IV and trypsin-like enzymatic degradation of human growth hormone-releasing hormone in plasma. J. Clin. Invest. 83, 1533–1540 (1989).

    Article  CAS  Google Scholar 

  31. Draghia-Akli, R., Li, X.G. & Schwartz, R.J. Enhanced growth by ectopic expression of growth hormone releasing hormone using an injectable myogenic vector. Nat. Biotechnol.. 15, 1285–1289 ( 1997).

    Article  CAS  Google Scholar 

  32. Bergsma, D.J., Grichnik, J.M., Gossett, L.M. & Schwartz, R.J. Delimitation and characterization of cis-acting DNA sequences required for the regulated expression and transcriptional control of the chicken skeletal alpha-actin gene. Mol. Cell. Biol. 6, 2462 –2475 (1986).

    Article  CAS  Google Scholar 

  33. Tanner, J.W., Davis, S.K., McArthur, N.H., French, J.T. & Welsh, T.H. Jr., Modulation of growth hormone (GH) secretion and GH mRNA levels by GH-releasing factor, somatostatin and secretagogues in cultured bovine adenohypophysial cells. J. Endocrinol. 125, 109–115 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jim Cunningham, Frankie Biggs, Craig Stubblefield, and MichaelStubblefield for excellent care of the animals; Dr. Harry Mersmann, RomanShipaylo, and Dr. Ken Ellis for the body composition measurements; CharlesMcDonald and Dr. Richard Cook for the synthesis of the HV-GHRH polypeptide;Jana Peters for the GH assays; and Dr. Craig Delaughter for carefully reviewing thismanuscript. We acknowledge support for this study from Applied VeterinarySystems Inc. (Houston, TX), The Texas Advanced Technology Program, and theNational Space Biological Research Institute (NASA), the US Department ofAgriculture, Agricultural Research Service under Cooperative Agreement number58-6250-6001. The contents of this publication do not necessarily reflect the viewsor policies of the US Department of Agriculture nor does mention of trade names orcommercial products or organizations imply endorsements by the US government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruxandra Draghia-Akli or Robert J. Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Draghia-Akli, R., Fiorotto, M., Hill, L. et al. Myogenic expression of an injectable protease-resistant growth hormone–releasing hormone augments long-term growth in pigs. Nat Biotechnol 17, 1179–1183 (1999). https://doi.org/10.1038/70718

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70718

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing