Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A cell surface tethered enzyme improves efficiency in gene-directed enzyme prodrug therapy

Abstract

The potential for expressing the bacterial enzyme carboxypeptidase G2 (CPG2) tethered to the outer surface of mammalian cells was examined for use in gene-directed enzyme prodrug therapy. The affinity of CPG2 for the substrate methotrexate was unaffected by three mutations required to prevent N-linked glycosylation. Breast carcinoma MDA MB 361 cells expressing CPG2 internally showed only a very modest increase in sensitivity to the prodrug CMDA because the prodrug did not enter the cells. Cells expressing surface-tethered CPG2, however, became 16–24-fold more sensitive to CMDA and could mount a good bystander effect. Systemic administration of CMDA to mice bearing established xenografts of the transfected cells led to sustained tumor regressions or cures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bridgewater, J., Springer, C.J., Knox, R., Minton, N., Michael, P., and Collins, M. 1995. Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954. Eur. J. Cancer 31A: 2362–2370.

    Article  CAS  PubMed  Google Scholar 

  2. Huber, B.E., Austin, E.A., Richards, C.A., Davis, S.T., and Good, S.S. 1994. Metabolism of 5-fluorocytidine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc. Natl. Acad. Sci. USA 91: 8302–8306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, W.W., Fujiwara, T., Grimm, E.A., and Roth, J.A. 1995. Advances in cancer gene therapy. Adv. Pharmacol. 12: 289–341.

    Article  Google Scholar 

  4. Niculescu-Duvaz, I. and Springer, C.J. 1997. Gene-directed enzyme prodrug therapy (GDEPT): a review of enzyme/prodrug combinations. Expert Opinion in Investigational Drugs 6: 685–703.

    Article  CAS  Google Scholar 

  5. Freeman, S.M., Abboud, C.N., Whartenby, K.A., Packman, C.H., Koeplin, D.S., Moolten, F.S., and Abraham, G.N. 1993. The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 53: 5274–5283.

    CAS  PubMed  Google Scholar 

  6. Hughes, B.W., Wells, A.H., Bebok, Z., Gadi, V.K., Garver, R.I., Parker, W.B., and Sorsher, E.J. 1995. Bystander killing of melanoma cells using the human tyrosi-nase promoter to express the Escherichia coli purine nucleoside phosphorylase gene. Cancer Res. 55: 3339–3345.

    CAS  PubMed  Google Scholar 

  7. Culver, K.W., Ram, Z., Wallbridge, S., Ishii, H., Oldfield, E.H., and Blaese, M.R. 1992. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256: 1550–1552.

    Article  CAS  PubMed  Google Scholar 

  8. Vile, R.G. and Hart, I.R. 1993. Use of tissue-specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res. 53: 3860–3864.

    CAS  PubMed  Google Scholar 

  9. Nabel, G.J., Chang, A.E., and Nabel, E.G. 1994. Immunotherapy for cancer by direct gene transfer into tumors. Human Gene Ther. 5: 57–77.

    Article  CAS  Google Scholar 

  10. O'Malley, B.W. Jr., Chen, S.H., Schwartz, M.R., and Woo, S.L.C. 1995. Adenovirus-mediated gene therapy for human head and neck squamous cell cancer in a nude mouse model. Cancer Res. 55: 1080–1085.

    CAS  PubMed  Google Scholar 

  11. Tanaka, T., Kanai, F., Okabe, S., Yoshida, Y., Wakimoto, H., Hamada, H., et al. 1996. Adenovirus-mediated prodrug gene-therapy for carcinoembryonic antigen-producing human gastric-carcinoma cells in vitro. Cancer Res. 56: 1341–1345.

    CAS  PubMed  Google Scholar 

  12. Moolten, F.L. 1986. Tumor chemosensitivity conferred by inserted Herpes thymidine kinase genes: Paradigm for a prospective cancer control strategy. Cancer Res. 46: 5276–5281.

    CAS  PubMed  Google Scholar 

  13. Borelli, E., Heyman, R., Hsi, M., and Evans, R.M. 1988. Targeting of an inducible toxic phenotype in animal cell. Proc. Natl. Acad. Sci. USA 85: 7572–7576.

    Article  Google Scholar 

  14. Caruso, M., Panis, Y., Gagandeep, S., Houssin, D., Salzmann, J.L., and Klatzmann, D. 1993. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc. Natl. Acad. Sci. USA 90: 7024–7028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oldfield, E.H., Ram, Z., Culver, K.W., Blaese, R.M., and DeVroom, H.L. 1993. Gene therapy for the treatment of brain tumors using intra-tumoral transduction with thymidine kinase gene and intravenous ganciclovir. Human Gene Ther. 4: 39–69.

    Article  CAS  Google Scholar 

  16. Barba, D., Hardin, J., Ray, J., and Gage, F.H. 1993. Thymidine kinase-mediated killing of rat brain tumors. J. Neurosurg. 79: 729–735.

    Article  CAS  PubMed  Google Scholar 

  17. Black, M.E., Newcomb, T.G., Wilson, H.M., and Loeb, L.A. 1996. Creation of drug-specific herpes simplex virus type-1 thymidine kinase mutants for gene therapy. Proc. Natl. Acad. Sci. USA 93: 3525–3529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sherwood, R.F., Melton, R.G., Alwan, S.M., and Hughes, P. 1985. Purification and properties of carboxypeptidase G2 from Pseudomonas sp. strain RS16. Eur. J. Biochem. 148: 447–453.

    Article  CAS  PubMed  Google Scholar 

  19. Springer, C.J., Antoniw, P., Bagshawe, K.D., Searle, F., Bisset, G.M.F., and Jarman, M. 1990. Novel prodrugs which are activated to cytotoxic alkylating agents by carboxypeptidase G2. J. Med. Chem. 33: 677–681.

    Article  CAS  PubMed  Google Scholar 

  20. Marais, R., Spooner, R.A., Light, Y., Martin, J., and Springer, C.J., 1996. Therapy (GDEPT) with a mustard prodrug/carboxypep-tidase G2 combination. Cancer Res. 56: 4735–4742.

    CAS  PubMed  Google Scholar 

  21. Duksin, D. and Mahoney, W.C. 1982. Relationship of the structure and biological activity of the natural homolgues of tunicamycin. J. Biol. Chem. 257: 3105–3109.

    CAS  PubMed  Google Scholar 

  22. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, D., Warren, J.T., et al. 1990. New colorimetric cytotoxicity assay for anticancer screening. J. Natl. Cancer Inst. 82: 1107–1112.

    Article  CAS  PubMed  Google Scholar 

  23. Raptis, I. and Firth, K.L. Electroporation of adherent cells in situ. 1990. DNA Cell Biol. 9: 615–621.

    Article  CAS  PubMed  Google Scholar 

  24. Raptis, I., Firth, K.L., Brownell, H.L., Todd, A., Simon, W.C., Bennet, B.M., et al. (eds.) 1995. pp 93–113 in Electroporation of adherent cells in situ for the introduction of nonpermeant molecules. Humana Press, Inc., Totowa, NJ.

    Google Scholar 

  25. Chanson, M., Bruzzone, R., Bosco, D., and Meda, P. 1989. Effects of n-alcohols on junctional coupling and amylase secretion of pancreatic acinar cells. J. Cell. Physiol. 139: 147–156.

    Article  CAS  PubMed  Google Scholar 

  26. Vile, R., Nelson, J.A., Castledon, S., Chang, H., and Hart, I. 1994. Systemic gene therapy of murine melanoma using tissue-specific expression of the HSV-TK gene involves an immune response. Cancer Res. 54: 6228–6234.

    CAS  PubMed  Google Scholar 

  27. Gagandeep, S., Brew, R., Green, B., Christmas, S.E., Klatzmann, D., Poston, G.J., and Kinsella, A.R. 1996. Prodrug-activated gene therapy: involvement of an immunological component in the “bystander effect. ” Cancer Gene Ther. 3: 83–88.

    CAS  PubMed  Google Scholar 

  28. Pavlovic, J., Nawrath, M., Tu, R., Heinicke, T., and Moelling, K. 1996. Anti-tumor immunity is involved in the thymidine kinase-mediated killing of tumors induced by activated Ki-Ras (G12V). Gene Ther. 3: 635–643.

    CAS  PubMed  Google Scholar 

  29. Ramash, R., Marrogi, A.J., Munshi, A., Abboud, C.N., and Freeman, S.M. 1996. In vivo analysis of the ‘bystander effect’: a cytokine cascade. Exp. Hematol. 24: 829–838.

    Google Scholar 

  30. Ramash, R., Munshi, A., Abboud, C.N., Marrogi, A.J., and Freeman, S.M. 1996. Expression of co-stimulatory molecule: B7 and ICAM up-regulation after treatment with a suicide gene. Cancer Gene Ther. 3: 373–384.

    Google Scholar 

  31. Springer, C.J. 1993. CMDA, an antineoplastic prodrug. Drugs of the Future 18: 212–215.

    Article  Google Scholar 

  32. Stribbling, S.M., Martin, J., Pedley, R.B., Boden, J.A., Sharma, S.K., and Springer, C.J. 1997. Biodistribution of an antibody-enzyme conjugate for ADEPT in nude mice bearing a human colon adenocarcinoma xenograft. Cancer Chemother. Pharmacol. 40: 277–284.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marais, R., Spooner, R., Stribbling, S. et al. A cell surface tethered enzyme improves efficiency in gene-directed enzyme prodrug therapy. Nat Biotechnol 15, 1373–1377 (1997). https://doi.org/10.1038/nbt1297-1373

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1297-1373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing