Research Paper | Published:

Engineered Resistance to Tomato Spotted Wilt Virus, a Negative–Strand RNA Virus

Bio/Technology volume 9, pages 13631367 (1991) | Download Citation

Subjects

Abstract

For a growing number of positive–strand RNA viruses, it has been demonstrated that transformation of host plants with the viral coat protein gene confers resistance to the corresponding virus. Thus far, successful transformation strategies to obtain resistance to negative–strand RNA viruses have not been reported. Here we show that genetically engineered resistance can be obtained to tomato spotted wilt virus, an enveloped virus with a negative–strand RNA genome, by transforming tobacco with the gene encoding the viral nucleocapsid protein, an internal RNA–binding protein. This approach may be useful for producing plants resistant to infection by other negative–strand viruses.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    1962. The present status of thrips-borne viruses, p. 33–40. In: Biological Transmission of Disease Agents. K. Maramorosch (Ed.). Academic Press, NY.

  2. 2.

    1974. Some properties and thrips transmission of tomato spotted wilt virus in Canada. Can. J. Bot. 52: 1177–1182.

  3. 3.

    and 1964. Electron microscopy of strain E of tomato spotted wilt virus and comments on its probable biosynethesis. Virology 23: 445–460.

  4. 4.

    1964. An electron microscope study of tomato spotted wilt virus in the plant cell. Neth. J. Plant Pathol. 70: 114–115.

  5. 5.

    1965. Electron microscopy of vira-cabeca virus (Brazilian tomato spotted wilt virus) within the host cell. Virology 26: 89–99.

  6. 6.

    , and 1977. The ribonucleic acid of tomato spotted wilt virus. J. Gen. Virol. 36: 81–91.

  7. 7.

    1981. Isolation and characterization of subviral structures from tomato spotted wilt virus. J. Gen. Virol. 53: 197–206.

  8. 8.

    , , , , and 1991. An overview of tomato spotted wilt virus, p. 1–14. In: Virus-Thrips-Plant Interactions of TSWV, Proc. USDA workshop, Beltsville, MD. H-.T. Hsu and R. H. Lawson, (Eds.). Nat. Tech. Inf. Serv. Springfield, VA.

  9. 9.

    , , and 1990. The S RNA segment of tomato spotted wilt virus has an ambisense character. J. Gen. Virol. 71: 1001–1007.

  10. 10.

    , , , , , , and 1991. Sequences and coding strategies of the S RNAs of Toscana and Rift Valley fever viruses compared to those of Punta Toro, Sicilian sandfly fever, and Uukuniemi viruses. Virology 180: 738–753.

  11. 11.

    , , , , and 1991. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J. Gen. Virol. 71: 2207–2216.

  12. 12.

    1990. Molecular biology of the Bunyaviridae. J. Gen. Virol. 71: 501–522.

  13. 13.

    , , , , , and 1984. Silver mottle disease of watermelon caused by tomato spotted wilt virus. Plant Dis. 68: 1006–1008.

  14. 14.

    and 1985. Tomato spotted wilt virus infecting begonia hybrids in Texas. Plant Dis. 69: 613.

  15. 15.

    , , and 1987. First report of tomato spotted wilt virus in Tennessee. Plant Dis. 71: 376.

  16. 16.

    and 1988. Cyclamen ringspot: Epidemics in Ontario greenhouses caused by the tomato spotted wilt virus. Can. J. Plant Pathol. 10 : 41–46.

  17. 17.

    1988. Tomato spotted wilt virus in ornamentals. Plant Pathol. circ. 313.

  18. 18.

    and 1988. The Western flower thrips Frankliniella occidentalis, a new thrips species causing damage in protected cultures in the Netherlands. Ent. Ber., Amst. 48: 140–144.

  19. 19.

    , and 1989. Un virus qui se réveille. Phytoma 410: 30–35.

  20. 20.

    , , and 1986. Reservoir weed hosts of tomato spotted wilt virus. Plant Dis. 70: 1014–1017.

  21. 21.

    and 1951. Resistance in tomato to the spotted wilt virus. Phytopathology 41: 257–260.

  22. 22.

    1953. Inheritance of spotted wilt resistance in the tomato. Austr. J. Biol. Sci. 6: 153–163.

  23. 23.

    1956. A study of the nature of resistance of the Mignonette variety of lettuce to the tomato spotted wilt virus. PhD. Thesis, University of California. Davis, California.

  24. 24.

    1958. A single-gene resistance test for viral relationship as applied to strains of spotted wilt virus. Virology 5: 382–390.

  25. 25.

    1968. Tomato spotted wilt virus. Adv. Virus Res. 13: 65–145.

  26. 26.

    and 1972. Resistance of wild species of Nicotiana to spotted wilt (Lycopersicon virus 3 (Smith)). Izv. Akad. Nauk Mold. SSR. Ser. Biol. Khim. Nauk 1972: 38–44.

  27. 27.

    , and 1982. Field resistance of varieties, hybrids and chemical mutants of tobacco to tobacco thrips and tomato spotted wilt virus. Tabak 1982: 43–44, no. 3.

  28. 28.

    , , and 1986. Sources of resistance to tomato spotted wilt virus in Lycopersicon. Fitopatologia Brasileira 11: 330–331.

  29. 29.

    and 1989. Resistance to tomato spotted wilt virus in lettuce. Hort. Science 24: 360–362.

  30. 30.

    , and 1989. Resistance in two Lycopersicon species to an Arkansas isolate of tomato spotted wilt virus. Euphytica 43: 173–178.

  31. 31.

    , and 1985. Analyses of the mRNA transcription processes of Punta Toro phlebovirus (Bunyaviridae). Virology 147: 317–325.

  32. 32.

    and 1986. Transcription antitermination during influenza virus template RNA synthesis requires the nucleocapsid protein and the absence of a 5′ capped end. Proc. Natl. Acad. Sci. USA. 83: 6282–6286.

  33. 33.

    , , , , , , , , and 1987. Molecular structure and early events in the replication of Tacaribe arenavirus S RNA. Virus Res. 7: 309–324.

  34. 34.

    and 1989. Modified model for the switch from Sendai virus transcription to replication. J. Virol. 63: 1951–1958.

  35. 35.

    , , , and 1987. A comparison of eukaryotic viral 5′-leader sequences as enhancers of mRNA expression in vivo. Nucl. Acid Res. 15: 8693–8711.

  36. 36.

    , , , and 1990. Serological differentiation of 20 isolates of tomato spotted wilt virus. J. Gen. Virol. 71: 2801–2807.

  37. 37.

    , and 1989. Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J. 9: 1677–1684.

  38. 38.

    , and 1989. Combinatorial and synergistic properties of CaMV 35S subdomains. EMBO J. 9: 1685–1696.

  39. 39.

    , and 1990. Coat protein-mediated resistance against virus infection. Ann. Rev. Phytopathol. 28: 451–474.

  40. 40.

    , , , , , , and 1990. Genetically engineered resistance: transgenic plants, p. 347–362. In: Plant Viruses. Vol. 2: Pathology. C. L. Mandahar, (Ed.). CRC Press, Boca Raton, FL.

  41. 41.

    , and 1977. The structural proteins of tomato spotted wilt virus. J. Gen. Virol. 36: 267–279.

  42. 42.

    , , , , , and (Eds.). 1990. Current Protocols in Molecular Biology. Green Publishing and Wiley-Interscience, NYC, NY.

  43. 43.

    1984. Binary Agrobacterium vectors for plant transformation. Nucl. Acids Res. 12: 8711–8721.

  44. 44.

    , , and 1983. A binary vector system based on separation of vir and T- region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180.

  45. 45.

    , , and 1980. Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA. 80: 7347–7351.

  46. 46.

    , , , , and 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

  47. 47.

    , and 1987. Improved method for the isolation of RNA from plant tissues. Anal. Biochem. 163: 16–20.

  48. 48.

    , , and 1991. Detection of tomato spotted wilt virus using polyclonal antisera in double antibody sandwich (DAS) ELISA and cocktail ELISA. J. Phytopathol. 132: 46–56.

  49. 49.

    1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

  50. 50.

    1970. Tomato spotted wilt virus. CMI/AAB Descr. of Plant Viruses 39.

  51. 51.

    , and 1985. Atlas of Plant Viruses, Vol. 1. CRC Press, Boca Raton, FL.

Download references

Author information

Author notes

    • Rob W. Goldbach

    Corresponding author.

Affiliations

  1. Zaadunie B. V., Department of Plant Biotechnology, Westeinde 62, P.O. Box 26, 1600 AA Enkhuizen, The Netherlands.

    • Jan J. L. Gielen
    • , Ad J. Kool
    •  & Mart Q. J. M. van Grinsven
  2. Department of Virology, Agricultural University Wageningen, Binnenhaven 11, P.O.Box 8045, 6709 PD Wageningen, The Netherlands.

    • Peter de Haan
    • , Dick Peters
    •  & Rob W. Goldbach

Authors

  1. Search for Jan J. L. Gielen in:

  2. Search for Peter de Haan in:

  3. Search for Ad J. Kool in:

  4. Search for Dick Peters in:

  5. Search for Mart Q. J. M. van Grinsven in:

  6. Search for Rob W. Goldbach in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nbt1291-1363

Further reading