Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Common Denominators of Promoter Control in Pseudomonas and Other Bacteria

Abstract

The analysis of gene regulation in bacteria is entering a new phase. Global regulatory networks, signal processing, responses of complexly regulated sets of genes, and interactions between regulatory systems are becoming a focus of intensive research efforts. Our understanding of how bacteria integrate diverse external and internal stimuli into a concerted cellular response may be the key to successfully engineer commercially important microbes, and treat medically significant bacteria. Research on Pseudomonas has contributed to the overall progress in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Palleroni, N.J. 1986. Taxonomy of pseudomonads. Vol. X, p3–25. In: The Bacteria. Sokatch, J.R. (Ed.) Academic Press, NY.

    Google Scholar 

  2. Lindow, S.E., Panopoulos, N.J., and McFarland, B.L. 1989. Genetic engineering of bacteria from managed and natural habitats. Science 244:1300–1307.

    Article  CAS  PubMed  Google Scholar 

  3. Iglewski, B.H. 1989. Probing Pseudomonas aeruginosa, an opportunistic pathogen. ASM News 55:303–307.

    Google Scholar 

  4. Crawford, I.P. 1988. The synthesis of tryptophan from chorismate: comparative aspects. Methods Enzymol. 142:293–300.

    Article  Google Scholar 

  5. Ronson, C.W., Nixon, B.T., and Ausubel, F.M. 1987. Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49:579–581.

    Article  CAS  PubMed  Google Scholar 

  6. Henikoff, S., Haughn, G.W., Calvo, J.M., and Wallace, J.C. 1988. A large number of bacterial activator proteins. Proc. Natl. Acad. Sci. USA 85:6602–6606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cornelis, G., Sluiters, C. de Rouvroit, C.L. Michiels, T. 1989. Homology between VirF, the transcriptional activator of Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator. J. Bacteriol. 171:254–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Henikoff, S., Wallace, J.C., and Brown, J.P. 1989. Finding protein similarities with nucleotide sequence databases. Methods Enzymol. In press.

  9. Deretic, V., Dikshit, R., Konyecsni, W.M., Chakrabarty, A.M., and Misra, T.K. 1989. algR gene, which regulates mucoidy in Pseudomonas aeruginosa belongs to a class of environmentally responsive genes. J. Bacteriol. 171:1278–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Inouye, S., Nakazawa, A., and Nakazawa, T. 1988. Nucleotide sequence of the regulatory gene xylR of the TOL plasmid from Pseudomonas putida. Gene 66:301–306.

    Article  CAS  PubMed  Google Scholar 

  11. Schell, M.A., and Sukordhaman, M. 1989. Evidence that the transcription activator encoded by the Pseudomonas putida nahR gene is evolutionarily related to the transcription activators encoded by the Rhizobium nodD genes. J. Bacteriol. 171:1952–1959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frantz, B., and Chakrabarty, A.M. 1987. Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation. Proc. Natl. Acad. Sci. USA 84:4460–4464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aldrich, T.L. and Chakrabarty, A.M. 1988. Transcriptional regulation, nucleotide sequence, and localization of the promoter of the catBC operon in Pseudomonas putida. J. Bacteriol. 170:1297–1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang, M., Hadero, A., and Crawford, I.P. 1989. Sequence of the Pseudomonas aeruginosa trpI activator gene and relatedness of trpI to other procaryotic regulatory genes. J. Bacteriol. 171:172–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Renault, P., Gaillardin, C., and Heslot, H. 1989. Product of the Lactococcus lactis gene required for malolactic fermentation is homologous to a family of positive regulators. J. Bacteriol. 171:3108–3114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ebright, R.H. 1986. Proposed amino acid-base pair contacts for 13 sequence-specific DNA binding proteins, p207–219. In: Protein structure, Folding and Design. Oxender, D. (Ed.). Alan Liss, New York.

    Google Scholar 

  17. Ishimoto, K.S., and Lory, S. 1989. Formation of pilin in Pseudomonas aeruginosa requires the alternative σ factor (RpoN) of RNA polymerase. Proc. Natl. Acad. Sci. USA 86:1954–1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dixon, R. 1986. The xylABC promoter from the Pseudomonas putida TOL plasmid is activated by nitrogen regulatory genes in Escherichia coli. Mol. Gen. Genet. 203:129–136.

    Article  CAS  PubMed  Google Scholar 

  19. Grim, C. and Panopoulos, N.J. 1989. The predicted protein product of a pathogenicity locus from Pseudomonas syringae pv. phaseolicola is homologous to a highly conserved domain of several procaryotic regulatory proteins. J. Bacteriol. 171:5031–5038.

    Article  Google Scholar 

  20. Huala, E. and Ausubel, F.M. 1989. The central domain of Rhizobium meliloti NifA is sufficient to activate transcription from the R. meliloti nifH promoter. J. Bacteriol. 171:3354–3365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Popham, D.L., Szeto, D., Keener, J., and Kustu, S. 1989. Function of a bacterial activator protein that binds to transcriptional enhancers. Science 243:629–635.

    Article  CAS  PubMed  Google Scholar 

  22. Helmann, J.D. and Chamberlin, M.J. 1988. Structure and function of bacterial sigma factors. Ann. Rev. Biochem. 57:839–872.

    Article  CAS  PubMed  Google Scholar 

  23. Deretic, V., Konyecsni, W.M. 1989. Control of mucoidy in Pseudomonas aeruginosa: Transcriptional regulation of algR and identification of the second regulatory gene, algQ. J. Bacteriol. 171:3680–3688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Itoh, Y., Soldati, L., Stalon, V., Falmagne, P., Terawaki, Y., Leisinger, T., and Haas, D. 1988. Anabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa: Nucleotide sequence and transcriptional control of the argF structural gene. J. Bacteriol. 170:2725–2734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Inouye, S., Nakazawa, A., and Nakazawa, T. 1985. Determination of the transcription initiation site and identification of the protein product of the regulatory gene xylR for xyl operons on the TOL plasmid. J. Bacteriol. 163:863–869.

  26. Stock, A.M., Mottonen, J.M., Stock, J.B., and Schutt, C.E. 1989. Three-dimensional structure of Che Y, the response regulator of bacterial chemotaxis. Nature 337:745–749.

    Article  CAS  PubMed  Google Scholar 

  27. Ninfa, A.J. and Magasanik, B. 1986. Covalent modification of the glnG product, NRI by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 83:5909–5913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weiss, W. and Magasanik, B. 1988. Phosphorylation of nitrogen regulator I (NRI) of Escherichia coli. Proc. Natl. Acad. Sci. USA 85:8919–8923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Igo, M.M., Ninfa, A.J., and Silhavy, T.J. 1989. A bacterial environmental sensor that functions as a protein kinase and stimulates transcriptional activation. Genes and Development 3:598–605.

    Article  CAS  PubMed  Google Scholar 

  30. Miller, J.F., Mekalanos, J.J., and Falkow, S. 1989. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243:916–922.

    Article  CAS  PubMed  Google Scholar 

  31. Stock, J.B., Ninfa, A.J., and Stock, A.M. 1989. Protein phosphorylation and the regulation of adaptive responses in bacteria. Microbiol. Rev. In press.

  32. Peng, H.L., Novick, R.P., Kreiswirth, B., Kornblum, J., and Schlievert, P. 1988. Cloning, characterization, and sequencing of an accessory gene regulator (agr)in Staphylococcus aureus. J. Bacteriol. 170:4365–4372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miller, V.L., DiRita, V.J., and Mekalanos, J.J. 1989. Identification of toxS, a regulatory gene whose product enhances ToxR-mediated activation of the cholera toxin promoter. J. Bacteriol. 171:1288–1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Proposed by the graduate students in the Department of Microbiology, UTHSC, San Antonio, during a journal club meeting.

  35. Ninfa, A.J., Ninfa, E.G., Lupas, A.N., Stock, A., Magasanik, B., and Stock, J. 1988. Crosstalk between bacterial chemotaxis signal transduction proteins and regulators of transcription of the Ntr regulon: evidence that nitrogen assimilation and chemotaxis are controlled by a common phosphotransfer mechanism. Proc. Natl. Acad. Sci. USA 85:5492–5496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Iuchi, S., Furlong, D., and Lin, E.C.C. 1989. Differentiation of arcA, arcB, and cpxA mutant phenotypes of Escherichia coli by sex pilus formation and enzyme regulation. J. Bacteriol. 171:2889–2893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsuyama, S.I., Mizuno, T., and Mizushima, S. 1986. Interaction between two proteins in osmoregulatory expression of ompF and ompC genes in Escherichia coli: a novel ompR mutation suppresses pleiotropic defect caused by an envZ mutation. J. Bacteriol. 168:1309–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Henner, D.J., Yang, M., and Ferrari, E. 1988. Localization of Bacillus subtilis sacU (Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signalling systems. J. Bacteriol. 170:5102–5109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Darzins, A., Wang, S.K., Vanags, R.I., and Chakrabarty, A.M. 1985. Clustering of mutations affecting alginic acid biosynthesis in mucoid Pseudomonas aeruginosa. J. Bacteriol. 164:516–524.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Darzins, A., Nixon, L.L., Vanags, R.I., and Chakrabarty, A.M. 1985. Cloning of Escherichia coli, and Pseudomonas aeruginosa phosphomannose isomerase genes and their expression in alginate-negative mutants of Pseudomonas aeruginosa. J. Bacteriol. 161:249–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Deretic, V., Gill, J.F., and Chakrabarty, A.M. 1987. Gene algD coding for GDPrnannose dehydrogenase is transcriptionally activated in mu-coid Pseudomonas aeruginosa. J. Bacteriol. 169:351–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deretic, V., Gill, J.F., and Chakrabarty, A.M. 1987. Alginate Biosynthesis: A model system for gene regulation and function in Pseudomonas. Nature Biotechnology 5:469–477.

    Article  CAS  Google Scholar 

  43. Fyfe, J.A.M. and Govan, J.R.W. 1980. Alginate synthesis in mucoid Pseudomonas aeruginosa: a chromosomal locus involved in control. J. Gen. Microbiol. 119:443–450.

    CAS  PubMed  Google Scholar 

  44. MacGeorge, J., Korolik, V., Morgan, A.F., Ashce, V., and Holoway, B.W. 1986. Transfer of a chromosomal locus responsible for mucoid colony morphology in Pseudomonas aeruginosa isolated from cystic librosis patients to P. aeruginosa PAO. J. Med. Microbiol. 21:331–336.

    Article  CAS  PubMed  Google Scholar 

  45. Flynn, J.L. and Ohman, D.E. 1988. Use of gene replacement cosmid vector for cloning alginate conversion genes from mucoid and non-mucoid Pseudomonas aeruginosa strains: algS controls expression of algT. J. Bacteriol. 170:3228–3236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Govan, J.R.W., Fyfe, J.A.M., and Baker, N.R. 1983. Hetergeneity and reduction in pulmonary clearance of mucoid Pseudomonas aeruginosa. Rev. Infect. Dis. 5:S874–S879.

    Article  PubMed  Google Scholar 

  47. Berry, A., De Vault, J.D., and Chakrabarty, A.M. 1989. High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J. Bacteriol. 171:2312–2317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Govan, J.R.W., Fyfe, J.A.M., and McMillan, C. 1979. The instability of mucoid Pseudomonas aeruginosa: Fluctuation test and improved stability of the mucoid form in shaken culture. J. Gen. Microbiol. 110:229–233.

    Article  CAS  PubMed  Google Scholar 

  49. Wanner, B.L., Wilmes, M.R., and Young, D.C. 1988. Control of bacterial alkaline phosphatase synthesis and variation in an Escherichia coli K-12 phoR mutant by adenyl cyclase, the cyclic AMP receptor protein, and the phoM operon. J. Bacteriol. 170:1092–1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Seifert, H.S., and So, M. 1988. Genetic mechanisms of bacterial antigenic variation. Microbiol. Rev. 52:327–336.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Iuchi, S., and Lin, E.C.C. 1988. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc. Natl. Acad. Sci. USA 85:1888–1892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weston, L.A. and Kadner, R.J. 1988. Role of uhp genes in expression of the Escherichia coli sugar-phosphate transport system. J. Bacteriol. 170:3375–3383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. David, M., Daveran, M.L., Batut, J., Dedieu, A., Domergue, O., Ghai, J., Hertig, C., Biostard, P., and Kahn, D. 1988. Cascade regulation of nifgene expression in Rhizobium meliloti. Cell 54:671–683.

    Article  CAS  PubMed  Google Scholar 

  54. Stewart, V., Parales, J., Jr., and Merkel, S.M. 1989. Structure of genes narL and narX of the nar (nitrate reductase)locus in Escherichia coli K-12. J. Bacteriol. 171:2229–2234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wozniak, D.J., Cram, D.C. Daniels, C.J., and Galloway, D.R. 1987. Nucleotide sequence and characterization of toxR: a gene involved in exotoxin A regulation in Pseudomonas aeruginosa. Nucleic Acids Res. 15:2123–2135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Duchene, M., Schweizer, A., Lottspeich, F., Krauss, G., Marget, M., Vogel, K. von Specht, B.U., and Domdey, H. 1988. Sequence and transcriptional start site of the Pseudomonas aeruginosa outer membrane porin protein F. gene. J. Bacteriol. 170:155–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. O'Hoy, K. and Krishnapillai, V. 1987. Recalibration of the Pseudomonas aeruginosa strain PAO chromosomal map in time units using high-frequency-of-recombination donors. Genetics 115:611–618.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deretic, V., Konyecsni, W., Mohr, C. et al. Common Denominators of Promoter Control in Pseudomonas and Other Bacteria. Nat Biotechnol 7, 1249–1254 (1989). https://doi.org/10.1038/nbt1289-1249

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1289-1249

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing