Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Increased Virulence of Agrobacterium Rhizogenes Conferred by the vir Region of pTiBo542: Application to Genetic Engineering of Poplar

Abstract

The ability of Agrobacterium rhizogenes to transform plants is dramatically increased by the presence of pTVK291, a plasmid containing part of the vir region of pTiBo542, the “supervirulent” plasmid. We have stably transformed the hybrid Populus trichocarpa x P. deltoides (clone H11) with “supervirulent” A. rhizogenes strains. The use of these bacterial strains as vectors for plant engineering was demonstrated by the transfer to poplar cells of the neomycin phosphotransferase II gene conferring resistance to kanamycin. The applications of these new A. rhizogenes strains to plant biotechnology are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nester, E.W., Gordon, M.P., Amasino, R.M. and Yanofsky, M.F. 1984. Crown gall: a molecular and physiological analysis. Ann. Rev. Plant Physiol. 35: 387–413.

    Article  CAS  Google Scholar 

  2. White, F.F. and Sinkar, V.P. 1987. Molecular analysis of root induction by Agrobacterium rhizogenes. In: “Plant DNA Infectious Agents”, Plant Gene Research, Volume 4, Hohn T. and Schell J. (eds.). Springer-Verlag, Wien (in press).

    Google Scholar 

  3. Sinkar, V.P., White, F.F. and Gordon, M.P. 1987. Molecular biology of Ri-plasmid. A review. J. of Bioscience 11: 47–57.

    Article  CAS  Google Scholar 

  4. Chilton, M.-D., Tepfer, D.A., Petit, A., David, C., Casse-Delbart, F. and Tempe, J. 1982. Agrobacterium rhizogenes inserts T-DNA into the genomes of host plant root cells. Nature 295: 432–434.

    Article  CAS  Google Scholar 

  5. Willmitzer, L., Sanchez Serrano, J., Bushfeld, E. and Schell, J. 1982. DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root tissue. Mol. Gen. Genet. 186: 16–22.

    Article  CAS  Google Scholar 

  6. White, F.F., Ghidossi, G., Gordon, M.P. and Nester, E.W. 1982. Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc. Natl. Acad. Sci. USA 79: 3193–3197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. White, F.F., Taylor, B.B., Huffman, G.A., Gordon, M.P. and Nester, E.W. 1985. Molecular and genetic analysis of the transferred DNA regions of the root inducing plasmid of Agrobacterium rhizogenes. J. Bacteriol. 164: 33–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Huffman, G.A., White, F.F., Gordon, M.P. and Nester, E.W. 1984. Hairy root inducing plasmid: physical map and homology to tumor inducing plasmids. J. Bacteriol. 157: 269–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Offringa, I.A., Melchers, L.S., Regensburg-Tuink, A.J.G., Costantino, P., Schilperoort, R.A. and Hooykaas, P.J.J. 1986. Complementation of Agrobacterium tumefaciens tumor-inducing aux mutants by genes from the TR-region of the Ri plasmid of Agrobacterium rhizogenes. Proc. Natl. Acad. Sci. USA 83: 6935–6939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schroder, G., Waffenschmidt, S., Weiler, E.W. and Schroder, J. 1985. The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur. J. Biochem. 138: 387–391.

    Article  Google Scholar 

  11. Thomashow, L.S., Reeves, S. and Tomashow, M.F. 1984. Crown gall oncogenesis: Evidence that a T-DNA gene from Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc. Natl. Acad. Sci. USA 81: 5071–5075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thomashow, M.F., Hugly, S., Buchholtz, W.G. and Thomashow, L.S. 1986. Molecular basis for the auxin-independent phenotype of crown gall tumor tissue. Science 231: 616–618.

    Article  CAS  PubMed  Google Scholar 

  13. De Paolis, A., Mauro, M., Pomponi, M., Cardarelli, M., Spano, L. and Costantino, P. 1985. Localisation of agropine-synthetizing functions in the TR region of the root inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 13: 1–17.

    Article  CAS  PubMed  Google Scholar 

  14. Vilaine, F. and Casse-Delbart, F. 1987. Independent induction of transformed roots by the TL and TR regions of the Ri plasmid of the agropine type Agrobacterium rhizogenes. Mol. Gen. Gent. 206: 17–23.

    Article  CAS  Google Scholar 

  15. Klee, H.J., Gordon, M.P. and Nester, E.W. 1982. Complementation analysis of Agrobacterium tumefaciens Ti-plasmid mutations affecting oncogenicity. J. Bacteriol. 150: 327–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Klee, H.J., White, F.F., Iyer, V.N., Gordon, M.P. and Nester, E.W. 1983. Mutational analysis of the virulence region of an Agrobacterium tumefaciens Ti plasmid. J. Bacteriol. 153: 878–883.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stachel, S.E. and Zambryski, P.C. 1986. Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjugation. Cell 47: 155–157.

    Article  CAS  PubMed  Google Scholar 

  18. Ackermann, C. 1977. Pflanzen aus Agrobacterium rhizogenes Tumoren an Nicotiana tabacum. Plant Sci. Lett. 8: 23–30.

    Article  Google Scholar 

  19. Spano, L. and Costantino, P. 1982. Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on tobacco. Z. Pflanzenphysiol. 106: 87–92.

    Article  Google Scholar 

  20. Tepfer, D. 1982. La transformation genetique de plantes superieures par Agrobacterium rhizogenes. 2e Colloque sur les recherches fruitieres-Bordeaux:47–59.

  21. Tepfer, D. 1984. Transformation of several species of higher plants by Agrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype. Cell 37: 959–967.

    Article  CAS  PubMed  Google Scholar 

  22. David, C., Chilton, M.P. and Tempe, J. 1984. Conservation of T-DNA in plants regenerated from hairy root cultures. Bio/Technology 2: 73–76.

    CAS  Google Scholar 

  23. Taylor, B.H., Amasino, R.M., White, F.F., Nester, E.W. and Gordon, M.P. 1985. T-DNA analysis of plants regenerated from hairy roots tumors. Mol. Gen. Genet. 201: 554–557.

    Article  CAS  Google Scholar 

  24. Wei, Z.-H., Kamada, H. and Harada, H. 1986. Transformation of Solanum nigrum L. protoplasts by Agrobacterium rhizogenes. Plant Cell Reports 5: 93–96.

    Article  CAS  PubMed  Google Scholar 

  25. Trulson, A.J., Simpson, R.B. and Shahin, E.A. 1986. Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenes. Theor. Appl. Genet. 72: 11–15.

    Article  Google Scholar 

  26. Spano, L., Mariotti, D., Pezzotti, M., Damiani, F. and Arcioni, S. 1987. Hairy root transformation in alfafa (Medicago sativa L.). Theor. Appl. Genet. 73: 523–530.

    Article  CAS  PubMed  Google Scholar 

  27. Costantino, P., Spano, L., Pomponi, M., Benvenuto, E. and Ancora, G. 1984. The T-DNA of Agrobacterium rhizogenes is transmitted through meiosis to the progeny of hairy root plants. J. Mol. Appl. Genet. 2: 465–470.

    CAS  PubMed  Google Scholar 

  28. Sinkar, V.P., Pythoud, F., Furner, I.J., White, F.F., Nester, E.W. and Gordon, M.P. 1987. Rol A locus of the Ri Plasmid is responsible for developmental abnormalities found in the transgenic plants (Submitted).

  29. Comai, L., Facciotti, D., Hiatt, W.R., Thompson, G., Rose, R.E. and Stalker, D.M. 1985. Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317: 741–744.

    Article  CAS  Google Scholar 

  30. Jensen, J.S., Marcker, K.A., Otten, L. and Schell, J. 1986. Nodule specific expression of a chimaeric soybean leghaemoglobin gene in transgenic Lotus corniculatum. Nature 321: 669–675.

    Article  CAS  Google Scholar 

  31. Haissig, B.E., Nelson, N.D. and Kidd, G.H. 1987. Trends in the use of tissue culture in forest improvement. Bio/Technology 5: 52–59.

    Google Scholar 

  32. Parsons, T.J., Sinkar, V.P., Stettler, R.F., Nester, E.W. and Gordon, M.P. 1986. Transformation of poplar by Agrobacterium tumefaciens. Bio/Technology 4: 533–536.

    CAS  Google Scholar 

  33. Fillatti, J.J., McCown, B.H., Sellmer, J., Haissig, B.E. and Comai, L. 1987. Agrobacterium mediated transformation and regeneration of poplar. Mol. Gen. Genet. 206: 192–199.

    Article  CAS  Google Scholar 

  34. Sederoff, R., Stomp, A.-M., Chilton, W.S. and Moore, L.W. 1986. Gene transfer into loblolly pine by Agrobacterium tumefaciens. Bio/Technology 4: 647–649.

    CAS  Google Scholar 

  35. Heilman, P.E. and Stettler, R.F. 1985. Genetic variation and production of Populus trichocarcarpa T. & G. and its hybrids. II. Biomass production in a 4-year plantation. Canadian Journal of Forest Research 15: 384–388.

    Article  Google Scholar 

  36. Bolton, G.W., Nester, E.W. and Gordon, M.P. 1986. Plant phenolics induced Agrobacterium virulence genes. Science 232: 983–985.

    Article  CAS  PubMed  Google Scholar 

  37. Hood, E.E., Jen, G., Kayes, L., Kramer, J., Fraley, R.T. and Chilton, M.-D. 1984. Restriction endonuclease map of pTiBo542, a potential Ti plasmid vector for genetic engineering of plants. Bio/Technology 2: 702–709.

    CAS  Google Scholar 

  38. Komari, T., Halperin, W. and Nester, E.W. 1986. Physical and functional map of supervirulent Agrobacterium tumefaciens tumor-inducing plasmid pTiBo542. J. Bacteriol. 166: 88–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jin, S., Komari, T., Gordon, M.P. and Nester, E.W. 1987. Genes responsible for the supervirulent phenotype of Agrobacterium tumefaciens strain A281. J. Bacteriol., in press.

  40. Ditta, G., Stanfield, S., Corbin, D., Helinski, D.R. 1980. Broad host range DNA cloning systems for gram negative bacteria: Construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA. 77: 7347–7351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G., Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  42. Schreier, P.H., Seftor, E.A., Schell, J. and Bohnert, H.J. 1985. The use of nuclear encoded sequences to direct the light regulated synthesis and transport of a foreign protein into plant chloroplasts. EMBO J. 4: 25–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mano, Y., Nabeshima, S., Matsu, C. and Ohkawa, H. 1986. Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agric. Biol. Chem. 50: 2715–2722.

    CAS  Google Scholar 

  44. Kamada, H., Okamura, N., Satake, M., Harada, H. and Shimomura, K. 1986. Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Reports 5: 239–242.

    Article  CAS  PubMed  Google Scholar 

  45. Rhodes, M.J.C., Hilton, M., Parr, A.J., Hamill, J.D. and Robins, R.J. 1986. Nicotine production by “hairy root” cultures of Nicotiana rustica: Fermentation and product recovery. Biotechnol. Lett. 8: 415–420.

    Article  CAS  Google Scholar 

  46. Hamill, J.D., Parr, A.J., Robins, R.J. and Rhodes, M.J.C. 1986. Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Reports 5: 111–114.

    Article  CAS  PubMed  Google Scholar 

  47. Wink, M. and Witte, L. 1987. Alkaloids in stem roots of Nicotiana tabacum and Spartium junceum transformed by Agrobacterium rhizogenes. Z. Naturforsch. 42c: 69–72.

    Article  Google Scholar 

  48. Strobel, G.A. and Nachmias, A. 1985. Agrobacterium rhizogenes promotes the initial growth of bare root stock almond. J. Gen. Microbiol. 131: 1245–1249.

    Google Scholar 

  49. De Cleene, M. and De Ley, J. 1976. The host range of crown gall. Bot Rev. 42: 389–466.

    Article  Google Scholar 

  50. De Cleene, M. and De Ley, J. 1981. The host range of infectious hairy root. Bot. Rev. 47: 147–194.

    Article  Google Scholar 

  51. Chilton, M.-D., Currier, T., Farrand, S., Bendich, A., Gordon, M.P. and Nester, E.W. 1974. Agrobacterium DNA and PS9 bacteriophage DNA not detected in crown gall tumors. Proc. Natl. Acad. Sci. USA 71: 3672–3676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Watson, B., Currier, T., Gordon, M.P., Chilton, M.-D. and Nester, E.W. 1975. Plasmid required for virulence of Agrobacterium tumefaciens. J. of Bacteriol. 123: 255–264.

    CAS  Google Scholar 

  53. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15: 473–497.

    Article  CAS  Google Scholar 

  54. Maniatis, T., Frish, E.F., Sambrook, J. 1982. Molecular cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, NY.

  55. Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.

    Article  CAS  PubMed  Google Scholar 

  56. Davis, B.J. 1964. Disc electrophoresis. II: Method and application to human serum proteins. Ann. N.Y. Ac. Sc. 121: 404–427.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pythoud, F., Sinkar, V., Nester, E. et al. Increased Virulence of Agrobacterium Rhizogenes Conferred by the vir Region of pTiBo542: Application to Genetic Engineering of Poplar. Nat Biotechnol 5, 1323–1327 (1987). https://doi.org/10.1038/nbt1287-1323

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1287-1323

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing