Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular engineering approaches to peptide, polyketide and other antibiotics

Abstract

Molecular engineering approaches to producing new antibiotics have been in development for about 25 years. Advances in cloning and analysis of antibiotic gene clusters, engineering biosynthetic pathways in Escherichia coli, transfer of engineered pathways from E. coli into Streptomyces expression hosts, and stable maintenance and expression of cloned genes have streamlined the process in recent years. Advances in understanding mechanisms and substrate specificities during assembly by polyketide synthases, nonribosomal peptide synthetases, glycosyltransferases and other enzymes have made molecular engineering design and outcomes more predictable. Complex molecular scaffolds not amenable to synthesis by medicinal chemistry (for example, vancomycin (Vancocin), daptomycin (Cubicin) and erythromycin) are now tractable by molecular engineering. Medicinal chemistry can further embellish the properties of engineered antibiotics, making the two disciplines complementary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of glycopeptide antibiotics.
Figure 2: Structures of lipopeptide antibiotics.
Figure 3: Combinatorial biosynthesis of lipopeptide antibiotics related to daptomycin.
Figure 4: Structures of macrolide secondary metabolites.

Similar content being viewed by others

References

  1. Newman, D.J., Cragg, G.M. & Snader, K.M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 66, 1022–1037 (2003).

    CAS  PubMed  Google Scholar 

  2. Alekshun, M.N. New advances in antibiotic development and discovery. Expert Opin. Investig. Drugs 14, 117–134 (2005).

    PubMed  Google Scholar 

  3. Baltz, R.H. Antibiotic discovery from actinomycetes: will a renaissance follow the decline and fall. SIM News 55, 186–196 (2005).

    Google Scholar 

  4. Baltz, R.H. Combinatorial biosynthesis of novel antibiotics and other secondary metabolites in actinomycetes. SIM News 56, 148–158 (2006).

    Google Scholar 

  5. McDaniel, R., Ebert-Khosla, S., Hopwood, D.A. & Khosla, C. Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature 375, 549–554 (1995).

    CAS  PubMed  Google Scholar 

  6. Katz, L. Manipulation of modular polyketide synthases. Chem. Rev. 97, 2557–2576 (1997).

    CAS  PubMed  Google Scholar 

  7. McDaniel, R. et al. Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel “unnatural” natural products. Proc. Natl. Acad. Sci. USA 96, 1846–1851 (1999).

    CAS  PubMed  Google Scholar 

  8. Hutchinson, C.R. & McDaniel, R. Combinatorial biosynthesis in microorganisms as a route to new antimicrobial, antitumor and neuroregerative drugs. Curr. Opin. Investig. Drugs 2, 1681–1690 (2001).

    CAS  PubMed  Google Scholar 

  9. Gust, B. et al. λ Red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv. Appl. Microbiol. 54, 107–128 (2004).

    CAS  PubMed  Google Scholar 

  10. Vetcher, L. et al. Rapid engineering of the geldanamycin biosynthetic pathway by Red/ET recombination and gene complementation. Appl. Environ. Microbiol. 71, 1829–1835 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Baltz, R.H., Miao, V. & Wrigley, S.K. Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat. Prod. Rep. 22, 717–741 (2005).

    CAS  PubMed  Google Scholar 

  12. Baltz, R.H., Brian, P., Miao, V. & Wrigley, S.K. Combinatorial biosynthesis of lipopeptide antibiotics in Streptomyces roseosporus. J. Ind. Microbiol. Biotechnol. 33, 66–74 (2006).

    CAS  PubMed  Google Scholar 

  13. Baltz, R.H. Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol. 6, 76–83 (1998).

    CAS  PubMed  Google Scholar 

  14. Sanchez, C., Méndez, C. & Salas, J.A. Engineering biosynthetic pathways to generate antitumor indolecarbazole derivatives. J. Ind. Microbiol. Biotechnol. 33, 560–568 (2006).

    CAS  PubMed  Google Scholar 

  15. Eustaquio, A.S. et al. Production of 8′-halogenated and 8′-unsubstituted novobiocin derivatives in genetically engineered Streptomyces coelicolor. Chem. Biol. 11, 1561–1572 (2004).

    CAS  PubMed  Google Scholar 

  16. Penn, J. et al. Heterologous production of daptomycin in Streptomyces lividans. J. Ind. Microbiol. Biotechnol. 33, 121–128 (2006).

    CAS  PubMed  Google Scholar 

  17. Solenberg, P.J. et al. Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis. Chem. Biol. 4, 195–202 (1997).

    CAS  PubMed  Google Scholar 

  18. Reeves, C.D. et al. Production of hybrid 16-membered macrolides by expressing combinations of polyketide synthase genes in engineered Streptomyces fradiae. Chem. Biol. 11, 1465–1472 (2004).

    CAS  PubMed  Google Scholar 

  19. Bierman, M. et al. Plasmid cloning vechors for conjugal transfer from Escherichia coli to Streptomyces ssp. Gene 116, 43–49 (1992).

    CAS  PubMed  Google Scholar 

  20. Miao, V. et al. Genetic engineering in Streptomyces roseosporus to produce hybrid lipopeptide antibiotics. Chem. Biol. 13, 269–276 (2006).

    CAS  PubMed  Google Scholar 

  21. Lautru, S. & Challis, G.L. Substrate recognition by nonribosomal peptide synthetase multi-enzymes. Microbiology 150, 1629–1636 (2004).

    CAS  PubMed  Google Scholar 

  22. Sieber, S.A. & Marahiel, M.A. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem. Rev. 105, 715–738 (2005).

    CAS  PubMed  Google Scholar 

  23. Grünewald, J. & Marahiel, M.A. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol. Mol. Biol. Rev. 70, 121–146 (2006).

    PubMed  PubMed Central  Google Scholar 

  24. Hahn, M. & Stachelhaus, T. Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains. Proc. Natl. Acad. Sci. USA 101, 15585–15590 (2004).

    CAS  PubMed  Google Scholar 

  25. Hahn, M. & Stachelhaus, T. Harnessing the potential of communication-mediating domains for biocombinatorial synthesis of nonribosomal peptides. Proc. Natl. Acad. Sci. USA 103, 275–280 (2006).

    CAS  PubMed  Google Scholar 

  26. Pace, J.L. & Yang, G. Glycopeptides: update on as old successful antibiotic class. Biochem. Pharmacol. 71, 968–980 (2006).

    CAS  PubMed  Google Scholar 

  27. Oberthur, M. et al. A systematic investigation of the synthetic utility of glycopeptide glycosyltransferases. J. Am. Chem. Soc. 127, 10747–10752 (2005).

    PubMed  Google Scholar 

  28. Kahne, D., Leimkuhler, C., Lu, W. & Walsh, C. Glycopeptide and lipoglycopeptide antibiotics. Chem. Rev. 105, 425–448 (2005).

    CAS  PubMed  Google Scholar 

  29. Donadio, S., Sosio, M., Stegmann, E., Weber, T. & Wohlleben, W. Comparative analysis and insights into the evolution of gene clusters for glycopeptide antibiotic biosynthesis. Mol. Genet. Genomics 274, 40–50 (2005).

    CAS  PubMed  Google Scholar 

  30. Puk, O. et al. Biosynthesis of chloro-β-hydroxytyrosine, a nonproteinogenic amino acid of the peptidic backbone of glycopeptide antibiotics. J. Bacteriol. 186, 6093–6100 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Süssmuth, R.D. & Wohlleben, W. The biosynthesis of glycopeptide antibiotics—a model for complex, non-ribosomally synthesized, peptidic secondary metabolites. Appl. Microbiol. Biotechnol. 63, 344–350 (2004).

    PubMed  Google Scholar 

  32. Bischoff, D. et al. The biosynthesis of vancomycin-type antibiotics – a model for oxidative side-chain cross-linking by oxygenases coupled to the action of peptide synthetase. ChemBioChem 6, 267–272 (2005).

    CAS  PubMed  Google Scholar 

  33. Walsh, C., Freel Meyers, C.L. & Losey, H.C. Antibiotic glycosyltransferases: antibiotic maturation and prospects for reprogramming. J. Med. Chem. 46, 3425–3436 (2003).

    CAS  PubMed  Google Scholar 

  34. Losey, H.C. et al. Incorporation of glucose analogs by GtfE and GtfD from the vancomycin biosynthetic pathway to generate variant glycopeptides. Chem. Biol. 9, 1305–1314 (2002).

    CAS  PubMed  Google Scholar 

  35. Yang, J., Fu, X., Liao, J., Liu, L. & Thorson, J.S. Structure-based engineering of E. coli galactokinase as a first step toward in vivo glycorandomization. Chem. Biol. 12, 657–664 (2005).

    CAS  PubMed  Google Scholar 

  36. Langenhan, J.M., Griffith, B.R. & Thorson, J.S. Neoglycorandomization and chemoenzymatic glycorandomization: two complementary tools for natural product diversification. J. Nat. Prod. 68, 1696–1711 (2005).

    CAS  PubMed  Google Scholar 

  37. Zhang, C. et al. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science 313, 1291–1294 (2006).

    CAS  PubMed  Google Scholar 

  38. Kruger, R.G. et al. Tailoring of glycopeptide scaffolds by the acyltransferase from the teicoplanin and A-40,926 biosynthetic operons. Chem. Biol. 12, 131–140 (2005).

    CAS  PubMed  Google Scholar 

  39. Bister, B. et al. Bromobalhimycin and chlorobromobalhimycins – illuminating the potential of halogenases in glycopeptide antibiotic biosynthesis. ChemBioChem 4, 658–662 (2003).

    CAS  PubMed  Google Scholar 

  40. Weist, S. et al. Fluorobalhimycin - a new chapter in glycopeptide antibiotic research. Angew. Chem. Int. Edn. Engl. 41, 3383–3385 (2002).

    CAS  Google Scholar 

  41. Weist, S. et al. Mutasynthesis of glycopeptide antibiotics: variations of vancomycin's AB-ring amino acid 3,5-dihydroxyphenylglycine. J. Am. Chem. Soc. 126, 5942–5943 (2004).

    CAS  PubMed  Google Scholar 

  42. Nguyen, K. et al. Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proc. Natl. Acad. Sci. USA 103, 17462–17467 (2006).

    CAS  PubMed  Google Scholar 

  43. Coëffet-Le Gal, M.-F., Thurson, L., Rich, P., Miao, V. & Baltz, R.H. Complementation of daptomycin dptA and dptD deletion mutations in trans and production of hybrid lipopeptide antibiotics. Microbiology 152, 2993–3001 (2006).

    Google Scholar 

  44. Nguyen, K.T. et al. Identification of a glutamic acid 3-methyltransferase gene by functional analysis of an accessory gene locus important for daptomycin biosynthesis in Streptomyces roseosporus. Mol. Microbiol. 61, 1294–1307 (2006).

    CAS  PubMed  Google Scholar 

  45. Hojati, Z. et al. Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem. Biol. 9, 1175–1187 (2002).

    CAS  PubMed  Google Scholar 

  46. Miao, V. et al. The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae. J. Ind. Microbiol. Biotechnol. 33, 129–140 (2006).

    CAS  PubMed  Google Scholar 

  47. Grünewald, J., Sieber, S.A., Mahlert, C., Linne, U. & Marahiel, M.A. Synthesis and derivatization of daptomycin: a chemoenzymatic route to acidic lipopeptide antibiotics. J. Am. Chem. Soc. 126, 17025–17031 (2004).

    PubMed  Google Scholar 

  48. Kopp, F., Grünewald, J., Mahlert, C. & Marahiel, M.A. Chemoenzymatic design of acidic lipopeptide hybrids: new insights into the structure-activity relationship of daptomycin and A54145. Biochemistry 45, 10474–10481 (2006).

    CAS  PubMed  Google Scholar 

  49. McDaniel, R., Welch, M. & Hutchinson, C.R. Genetic approaches to polyketide antibiotics.1. Chem. Rev. 105, 543–558 (2005).

    CAS  PubMed  Google Scholar 

  50. Weissman, K.J. & Leadlay, P.F. Combinatorial biosynthesis of reduced polyketides. Nat. Rev. Microbiol. 3, 925–936 (2005).

    CAS  PubMed  Google Scholar 

  51. Reid, R. et al. A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. Biochemistry 42, 72–79 (2003).

    CAS  PubMed  Google Scholar 

  52. Baerga-Ortiz, A. et al. Directed mutagenesis alters the stereochemistry of catalysis by isolated ketoreductase domains from the erythromycin polyketide synthase. Chem. Biol. 13, 277–285 (2006).

    CAS  PubMed  Google Scholar 

  53. O'Hare, H.M., Baerga-Ortiz, A., Popovic, B., Spencer, J.B. & Leadlay, P.F. High-throughput mutagenesis to evaluate models of stereochemical control in ketoreductase domains from the erythromycin polyketide synthase. Chem. Biol. 13, 287–296 (2006).

    CAS  PubMed  Google Scholar 

  54. Menzella, H.G. et al. Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat. Biotechnol. 23, 1171–1176 (2005).

    CAS  PubMed  Google Scholar 

  55. Chandran, S.S., Menzella, H.G., Carney, J.R. & Santi, D.V. Activating hybrid modular interfaces in synthetic polyketide synthases by cassette replacement of ketosynthase domains. Chem. Biol. 13, 469–474 (2006).

    CAS  PubMed  Google Scholar 

  56. Sherman, D. The lego-ization of polyketide biosynthesis. Nat. Biotechnol. 23, 1083–1084 (2005).

    CAS  PubMed  Google Scholar 

  57. Menzella, H.G. et al. Redesign, synthesis and functional expression of the 6-deoxyerythronolide B polyketide synthase gene cluster. J. Ind. Microbiol. Biotechnol. 33, 22–28 (2006).

    CAS  PubMed  Google Scholar 

  58. Peiru, S., Menzella, H.G., Rodriquez, E., Carney, J. & Gramajo, H. Production of the potent antibacterial polyketide erythromycin C in Escherichia coli. Appl. Environ. Microbiol. 71, 2539–2547 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Borisova, S.A. et al. Substrate specificity of the macrolide-glycosylating enzyme pair DesVII/DesVIII: opportunities, limitations, and mechanistic hypothesis. Angew. Chem. Int. Edn. Engl. 45, 2748–2753 (2006).

    CAS  Google Scholar 

  60. Galm, U., Dessoy, A., Schmidt, J., Wessjohann, L.A. & Heide, L. In vitro and in vivo production of new aminocoumarins by a combined biochemical, genetic, and synthetic approach. Chem. Biol. 11, 173–183 (2004).

    CAS  PubMed  Google Scholar 

  61. Eustaquio, A.S. et al. Heterologous expression of novobiocin and chlorobiocin biosynthetic gene clusters. Appl. Environ. Microbiol. 71, 2452–2459 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, S.-M. & Heide, L. New aminocoumarin antibiotics from genetically engineered Streptomyces strains. Curr. Med. Chem. 12, 419–427 (2005).

    CAS  PubMed  Google Scholar 

  63. Flatman, R.H., Eustaquio, A., Li, S.-M., Heide, L. & Maxwell, A. Structure-activity relationships of aminocoumarin-type gyrase and topoisomerase IV inhibitors obtained by combinatorial biosynthesis. Antimicrob. Agents Chemother. 50, 1136–1142 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Waldron, C. et al. Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. Chem. Biol. 8, 487–499 (2001).

    CAS  PubMed  Google Scholar 

  65. Hahn, D.R. et al. Butenyl-spinosyns, a natural example of genetic engineering of antibiotic biosynthetic genes. J. Ind. Microbiol. Biotechnol. 33, 94–104 (2006).

    CAS  PubMed  Google Scholar 

  66. Sheehan, L.S. et al. Engineering of the spinosyn PKS cluster to generate novel active spinosyn analogs. J. Nat. Prod. (in the press).

  67. Salas, A.P. et al. Deciphering the late steps in the biosynthesis of the anti-tumor indolecarbazole staurosporine: sugar donor substrate flexibility of the StaG glycosyltransferase. Mol. Microbiol. 58, 17–27 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sanchez, C. et al. Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc. Natl. Acad. Sci. USA 102, 461–466 (2005).

    CAS  PubMed  Google Scholar 

  69. Sosio, M. & Donadio, S. Understanding and manipulating glycopeptide pathways: the example of the dalbavancin precursor A40926. J. Ind. Microbiol. Biotechnol. 33, 569–576 (2006).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H Baltz.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltz, R. Molecular engineering approaches to peptide, polyketide and other antibiotics. Nat Biotechnol 24, 1533–1540 (2006). https://doi.org/10.1038/nbt1265

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing