Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stem cell–derived erythroid cells mediate long-term systemic protein delivery

Abstract

We demonstrate here the capacity of erythroid cells to mediate long-term, systemic and therapeutic protein delivery in vivo. By targeting human factor IX (hFIX) expression to late-stage erythropoiesis, we achieve long-term hFIX secretion at levels significantly higher (>tenfold) than those obtained with an archetypal ubiquitous promoter in a mouse model of hemophilia B. Erythroid cell–derived hFIX is biologically active, resulting in phenotypic correction of the bleeding disorder. In addition to achieving high expression levels and resistance to transcriptional silencing, red cell–mediated protein delivery offers multiple advantages including immune tolerance induction, reduction of the risk of insertional oncogenesis and relative ease of application by either engrafting transduced hematopoietic stem cells or transfusing ex vivo–generated, stem cell–derived erythroid cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure and in vitro function of erythroid-specific lentiviral vectors.
Figure 2: Long-term secretion of hFIX in RT9-hFIX-SI–transduced bone marrow chimeras.
Figure 3: Erythroid-specific expression of hFIX in vivo.
Figure 4: Lack of humoral immune response against hFIX and strong tolerance induction.

References

  1. 1

    Ganong, W.F. . Review of Medical Physiology, edn. 20 (Lange Medical Books/McGraw-Hill, New York, 2001).

    Google Scholar 

  2. 2

    Wang, L. et al. A factor IX-deficient mouse model for hemophilia B gene therapy. Proc. Natl. Acad. Sci. USA 94, 11563–11566 (1997).

    CAS  Article  Google Scholar 

  3. 3

    Mannucci, P.M. & Tuddenham, E.G. The hemophilias—from royal genes to gene therapy. N. Engl. J. Med. 344, 1773–1779 (2001).

    CAS  Article  Google Scholar 

  4. 4

    May, C. et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 406, 82–86 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Kurachi, S., Hitomi, Y., Furukawa, M. & Kurachi, K. Role of intron I in expression of the human factor IX gene. J. Biol. Chem. 270, 5276–5281 (1995).

    CAS  Article  Google Scholar 

  6. 6

    Woods, N.B. et al. Lentiviral-mediated gene transfer into haematopoietic stem cells. J. Intern. Med. 249, 339–343 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Challita, P.M. & Kohn, D.B. Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proc. Natl. Acad. Sci. USA 91, 2567–2571 (1994).

    CAS  Article  Google Scholar 

  8. 8

    Liu, Y., Nelson, A.N. & Lipsky, J.J. Vitamin K-dependent carboxylase: mRNA distribution and effects of vitamin K-deficiency and warfarin treatment. Biochem. Biophys. Res. Commun. 224, 549–554 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Samakoglu, S. et al. A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference. Nat. Biotechnol. 24, 89–94 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Kootstra, N.A., Matsumura, R. & Verma, I.M. Efficient production of human FVIII in hemophilic mice using lentiviral vectors. Mol. Ther. 7, 623–631 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Evans, G.L. & Morgan, R.A. Genetic induction of immune tolerance to human clotting factor VIII in a mouse model for hemophilia A. Proc. Natl. Acad. Sci. USA 95, 5734–5739 (1998).

    CAS  Article  Google Scholar 

  12. 12

    Moayeri, M., Hawley, T.S. & Hawley, R.G. Correction of murine hemophilia A by hematopoietic stem cell gene therapy. Mol. Ther. 12, 1034–1042 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Heim, D.A. & Dunbar, C.E. Hematopoietic stem cell gene therapy: towards clinically significant gene transfer efficiency. Immunol. Rev. 178, 29–38 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Bagley, J., Bracy, J.L., Tian, C., Kang, E.S. & Iacomini, J. Establishing immunological tolerance through the induction of molecular chimerism. Front. Biosci. 7, d1331–d1337 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Bennett, B., Check, I.J., Olsen, M.R. & Hunter, R.L. A comparison of commercially available adjuvants for use in research. J. Immunol. Methods 153, 31–40 (1992).

    CAS  Article  Google Scholar 

  16. 16

    Herzog, R.W. et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc. Natl. Acad. Sci. USA 94, 5804–5809 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Axelrod, J.H., Read, M.S., Brinkhous, K.M. & Verma, I.M. Phenotypic correction of factor IX deficiency in skin fibroblasts of hemophilic dogs. Proc. Natl. Acad. Sci. USA 87, 5173–5177 (1990).

    CAS  Article  Google Scholar 

  18. 18

    Rodriguez, M.H. et al. Expression of coagulation factor IX in a haematopoietic cell line. Thromb. Haemost. 87, 366–373 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Li, Q., Peterson, K.R., Fang, X. & Stamatoyannopoulos, G. Locus control regions. Blood 100, 3077–3086 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Kikuchi, J. et al. Sustained transgene expression by human cord blood derived CD34+ cells transduced with simian immunodeficiency virus agmTYO1-based vectors carrying the human coagulation factor VIII gene in NOD/SCID mice. J. Gene Med. 6, 1049–1060 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Tiede, A. et al. Recombinant factor VIII expression in hematopoietic cells following lentiviral transduction. Gene Ther. 10, 1917–1925 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Hoeben, R.C. et al. Toward gene therapy in haemophilia A: retrovirus-mediated transfer of a factor VIII gene into murine haematopoietic progenitor cells. Thromb. Haemost. 67, 341–345 (1992).

    CAS  Article  Google Scholar 

  23. 23

    Bigger, B.W. et al. Permanent partial phenotypic correction and tolerance in a mouse model of hemophilia B by stem cell gene delivery of human factor IX. Gene Ther. 13, 117–126 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Kohn, D.B., Sadelain, M. & Glorioso, J.C. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat. Rev. Cancer 3, 477–488 (2003).

    CAS  Article  Google Scholar 

  26. 26

    von Kalle, C., Baum, C. & Williams, D.A. Lenti in red: progress in gene therapy for human hemoglobinopathies. J. Clin. Invest. 114, 889–891 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Sadelain, M. Insertional oncogenesis in gene therapy: how much of a risk? Gene Ther. 11, 569–573 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Giarratana, M.C. et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat. Biotechnol. 23, 69–74 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Ng, E.S., Davis, R.P., Azzola, L., Stanley, E.G. & Elefanty, A.G. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106, 1601–1603 (2005).

    CAS  Article  Google Scholar 

  30. 30

    Margaritis, P. et al. Novel therapeutic approach for hemophilia using gene delivery of an engineered secreted activated Factor VII. J. Clin. Invest. 113, 1025–1031 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Inder Verma for providing the C57BL/6-FIX−/− mice. This work was supported by National Institutes of Health grants HL66952, HL57612, CA59350 and CA08748; by the Leonardo Giambrone Foundation; and by Mr. William H. Goodwin, Mrs. Alice Goodwin and the Commonwealth Cancer Foundation for Research. A.H.C. is the recipient of a scholarship from the Program of Excellence in Gene Therapy (PEGT) program. M.T.S. is the recipient of a predoctoral fellowship from the Cancer Research Institute.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michel Sadelain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chang, A., Stephan, M. & Sadelain, M. Stem cell–derived erythroid cells mediate long-term systemic protein delivery. Nat Biotechnol 24, 1017–1021 (2006). https://doi.org/10.1038/nbt1227

Download citation

Further reading

Search

Quick links