Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Chimeric brains generated by intraventricular transplantation of fetal human brain cells into embryonic rats

Abstract

Limited experimental access to the central nervous system (CNS) is a key problem in the study of human neural development, disease, and regeneration. We have addressed this problem by generating neural chimeras composed of human and rodent cells. Fetal human brain cells implanted into the cerebral ventricles of embryonic rats incorporate individually into all major compartments of the brain, generating widespread CNS chimerism. The human cells differentiate into neurons, astrocytes, and oligodendrocytes, which populate the host fore-, mid-, and hindbrain. These chimeras provide a unique model to study human neural cell migration and differentiation in a functional nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Incorporation of human neural precursor cells into the developing rat brain, visualized by human-specific DNA in situ hybridization (dark nuclear labeling).
Figure 2: Human neural precursors grown for 6 weeks as monolayers in EGF- and FGF-containing media incorporated into the subventricular zone of the lateral ventricle and migrating into corpus callosum (cc), striatum (st), and cortex (co).
Figure 3: Morphological features of human neural precursors transplanted into the embryonic rat brain, visualized with a human-specific antibody to GSTπ.
Figure 4: Human oligodendrocytes derived from transplanted (A–C, G–H) EGF- and (D-F) EGF/FGF2-generated spheres incorporated into the brain of 7-week-old rats.
Figure 5: Astrocytic differentiation of the transplanted cells.
Figure 6: Human neurons incorporated into the rat brain.

Similar content being viewed by others

References

  1. Weiss, S., Reynolds, B.A., Vescovi, A.L., Morshead, C., Craig, C.G., and van der Kooy, D. 1996. Is there a neural stem cell in the mammalian forebrain? Trends Neurosci. 19: 387–393.

    Article  Google Scholar 

  2. McKay, R.D.G. 1997. Stem cells in the central nervous system. Science 276: 66–71.

    Article  Google Scholar 

  3. Sabaté, O., Horellou, P., Vigne, E., Colin, P., Perricaudet, M., Buc-Caron, M.H. et al. 1995. Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses. Nat. Genet. 9: 256–260.

    Article  Google Scholar 

  4. Buc-Caron, M.H. 1995. Neuroepithelial progenitor cells explanted from human fetal brain proliferate and differentiate in vitro. Neurobiol. Dis. 2: 37–47.

    Article  Google Scholar 

  5. Murray, K. and Dubois-Dalcq, M. 1997. Emergence of oligodendrocytes from human neural spheres. J. Neurosci. Res. 50: 146–156.

    Article  Google Scholar 

  6. Brüstle, O., Maskos, U., and McKay, R.D.G. 1995. Host-guided migration allows targeted introduction of neurons into the embryonic brain. Neuron 15: 1275–1285.

    Article  Google Scholar 

  7. Campbell, K., Olsson, M., and Björklund, A. 1995. Regional incorporation and site-specific differentiation of striatal precursors transplanted to the embryonic forebrain ventricle. Neuron 15: 1259– 1273.

    Article  Google Scholar 

  8. Brüstle, O., Spiro, C.A., Karram, K., Choudhary, K., Okabe, S., and McKay, R.D.G. 1997 . In vitro-generated neural precursors participate in mammalian brain development. Proc. Natl. Acad. Sci. USA 94: 14809–14814.

    Article  Google Scholar 

  9. Olsson, M., Bjerregaard, K., Winkler, C., Gates, M., Björklund, A., and Campbell, K. 1998. Incorporation of mouse neural progenitors transplanted into the rat embryonic forebrain is developmentally regulated and dependent on regional and adhesive properties. Eur. J. Neurosci. 10: 71–85.

    Article  Google Scholar 

  10. Reynolds, B.A. and Weiss, S. 1992. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707 –1710.

    Article  Google Scholar 

  11. Brüstle, O., Cunningham, M., Tabar, V., and Studer, L. 1997. Experimental transplantation in the embryonic, neonatal, and adult mammalian brain, pp. 3.10.11–13.10.28 in Current protocols in neuroscience. Crawley, J., Gerfen, C., McKay, R.D.G., Rogawski, M., Sibley, D., and Skolnick, P. (eds.). John Wiley, New York.

    Google Scholar 

  12. Rubin, C.M., Houck, C.M., Deininger, P.L., Friedmann, T., and Schmid, C.W. 1980. Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences. Nature 284: 372– 374.

    Article  Google Scholar 

  13. Fishell, G. 1995. Striatal precursors adopt cortical identities in response to local cues. Development 121: 803–812.

    Google Scholar 

  14. Lim, D.A., Fishell, G.J., and Alvarez-Buylla, A. 1997. Postnatal mouse subventricular zone neuronal precursors can migrate and differentiate within multiple levels of the developing neuraxis. Proc. Natl. Acad. Sci. USA 94: 14832–14836.

    Article  Google Scholar 

  15. Brophy, P.J., Boccaccio, G.L., and Colman, D.R. 1993. The distribution of myelin basic protein mRNAs within myelinating oligodendrocytes. Trends Neurosci. 16: 515–521.

    Article  Google Scholar 

  16. Cammer, W. and Zhang, H. 1992. Localization of Pi class glutathione-S-transferase in the forebrains of neonatal and young rats: evidence for separation of astrocytic and oligodendrocytic lineages. J. Comp. Neurol. 321: 40– 45.

    Article  Google Scholar 

  17. Fouquet, F., Zhou, J.M., Ralston, E., Murray, K., Troalen, F., Magal, E. et al. 1997. Expression of the adrenoleukodystrophy protein in the human and mouse central nervous system. Neurobiol. Dis. 3: 271– 285.

    Article  Google Scholar 

  18. Trojanowski, J.Q., Mantione, J.R., Lee, J.H., Seid, D.P., You, T., Inge, L.J. et al. 1993. Neurons derived from a human teratocarcinoma cell line establish molecular and structural polarity following transplantation into the rodent brain. Exp. Neurol. 122: 283–294.

    Article  Google Scholar 

  19. Wictorin, K., Brundin, P., Gustavii, B., Lindvall, O., and Björklund, A. 1990. Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts. Nature 347: 556– 558.

    Article  Google Scholar 

  20. Wictorin, K., Brundin, P., Sauer, H., Lindvall, O., and Björklund, A. 1992. Long distance directed axonal growth from human dopaminergic mesencephalic neuroblasts implanted along the nigrostriatal pathway in 6-hydroxydopamine lesioned adult rats. J. Comp. Neurol. 323: 475–494.

    Article  Google Scholar 

  21. Svendsen, C.N., Caldwell, M.A., Shen, J., ter Borg, M.G., Rosser, A.E., Tyers, P. et al. 1997. Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson's disease. Exp. Neurol. 148: 135–146.

    Article  Google Scholar 

  22. Ono, K., Yasui, Y., Rutishauser, U., and Miller, R.H. 1997. Focal ventricular origin and migration of oligodendrocyte precursors into the chick optic nerve. Neuron 19: 283–292.

    Article  Google Scholar 

  23. Levison, S.W., Chuang, C., Abramson, B.J., and Goldman, J.E. 1993. The migrational patterns and developmental fates of glial precursors in the rat subventricular zone are temporally regulated. Development 119: 611–622 .

    Google Scholar 

  24. Alvarez-Buylla, A. and Lois, C. 1995. Neuronal stem cells in the brain of adult vertebrates. Stem Cells 13: 263–272.

    Article  Google Scholar 

  25. Craig, C.G., Tropepe, V., Morshead, C.M., Reynolds, B.A., Weiss, S., and van der Kooy, D. 1996. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16: 2649– 2658.

    Article  Google Scholar 

  26. Kuhn, H.G., Winkler, J., Kempermann, G., Thal, L.J., and Gage, F.H. 1997. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17: 5820–5829.

    Article  Google Scholar 

  27. Gumpel, M., Lachapelle, F., Gansmuller, A., Baulac, M., Baron van Evercooren, A., and Baumann, N. 1987. Transplantation of human embryonic oligodendrocytes into shiverer brain. Ann. NY Acad. Sci. 495: 71–85.

    Article  Google Scholar 

  28. Seilhean, D., Gansmüller, A., Baron-Van Evercooren, A., Gumpel, M., and Lachapelle, F. 1996 . Myelination by transplanted human and mouse central nervous system tissue after long-term cryopreservation. Acta. Neuropathol. 91: 82–88.

    Article  Google Scholar 

  29. Duncan, I.D., Grever, W.E., and Zhang, S.C. 1997. Repair of myelin disease: strategies and progress in animal models. Mol. Med. Today 3: 554–561.

    Article  Google Scholar 

  30. Groves, A.K., Barnett, S.C., Franklin, R.J.M., Crang, A.J., Mayer, M., Blakemore, W.F. et al. 1993. Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature 362: 453–455.

    Article  Google Scholar 

  31. Tontsch, U., Archer, D.R., Dubois-Dalcq, M., and Duncan, I.D. 1994. Transplantation of an oligodendrocyte cell line leading to extensive myelination. Proc. Natl. Acad. Sci. USA 91: 11616–11620.

    Article  Google Scholar 

  32. Blakemore, W.F., Olby, N.J., and Franklin, R.J.M. 1995. The use of transplanted glial cells to reconstruct glial environments in the CNS. Brain Pathol. 5: 443–450.

    Article  Google Scholar 

  33. Lachapelle, F. 1995. Glial transplants: an in vivo analysis of extrinsic and intrinsic determinants of dysmyelination in genetic variants. Brain Pathol. 5: 289–299.

    Article  Google Scholar 

  34. Duncan, I.D. and Milward, E.A. 1995. Glial cell transplants: experimental therapies of myelin diseases. Brain Pathol. 5: 301–310.

    Article  Google Scholar 

  35. Nave, K.A. and Boespflug-Tanguy, O. 1996. X-linked developmental defects of myelination: from mouse mutants to human genetic diseases. The Neuroscientist 2: 33–43.

    Article  Google Scholar 

  36. Dunnett, S.B. and Björklund, A. 1992. Neural transplantation. a practical approach. Oxford University Press, New York.

    Google Scholar 

  37. Lendahl, U., Zimmermann, L.B., and McKay, R.D.G. 1990. CNS stem cells express a new class of intermediate filament protein. Cell 60: 585–595.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Maeda for providing the adenoviral vector and J. Trojanowski and P. Aubourg for the HO14 and ALDP antibodies, respectively. We would also like to thank John Rajan and his group for coordinating the tissue transfer and the Myelin Project for support to M.D.-D. and K.M.. Roberto Bruzzone, Kimberly Jones, and Bernard Rogister critically read the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Brüstle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brüstle, O., Choudhary, K., Karram, K. et al. Chimeric brains generated by intraventricular transplantation of fetal human brain cells into embryonic rats. Nat Biotechnol 16, 1040–1044 (1998). https://doi.org/10.1038/3481

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3481

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing