Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Genetic Fingerprinting for Yeasts

Abstract

In this paper we describe two complementary approaches to a molecular taxonomy for the yeasts which exploit hybridisation to restriction fragments containing the repetitive sequence poly[dGdT.dCdA] (polyGT). This method will be of particular use to industrial users of the yeasts, whether they are brewers, bakers or other biotechnologists, since it has the potential to supplant the array of biochemical and physiological tests currently employed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ainsworth, G.C. et al. 1973. The Fungi; An Advanced Treatise. Volume 4a Academic Press, NY.

    Google Scholar 

  2. Beach, D., Durkacz, B. and Nurse, P. 1982. Functionally homologous Cell cycle control genes in budding and fission yeast. Nature 300:706–709.

    Article  CAS  Google Scholar 

  3. Barnett, J.A. et al. 1983. Yeasts, Characteristics and Identification. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  4. Hadfield, C., Cashmore, A.M. and Peacock, P.A. 1986. An efficient chloramphemcol resistance marker for S. cenvisiae and E. coli . Gene 45:149–158.

    Article  CAS  Google Scholar 

  5. Goebl, M. and Petes, T.D. 1986. Most of the yeast genomic sequences are not essential for growth and division. 46:983–992.

  6. Zamb, T.J. and Petes, T.D. 1982. Analysis of the junction between ribosomal RNA genes and single-copy chromosomal sequences in the yeast Saccharomyces cerevisiae . Cell 28:355–364.

    Article  CAS  Google Scholar 

  7. Petes, T.D. and Botstem, D. 1977. Simple Mendehan inheritance of the reiterated ribosomal DNA of yeast. Proc. Natl. Acad. Sci. USA 74:5091–5095.

    Article  CAS  Google Scholar 

  8. Cameron, J.R., Loh, E.Y. and Davis, R.W. 1979 Evidence for transposition of dispersed repetitive DNA families in yeast. Cell 16:739–751.

    Article  CAS  Google Scholar 

  9. Fink, G., Farabaugh, P., Roeder, G. and Chaleff, D. 1980. Transposable elements (Ty) in yeast. Cold Spr. Harb. Symp. Quant. Biol. 45:575–617.

    Article  Google Scholar 

  10. Olsen, M.V., Loughney, K. and Hall, B.D. 1979. Identification of the yeast DNA sequences that correspond to specific tyrosine-inserting nonsense suppressor loci. J. Mol. Biol. 132:387–410.

    Article  Google Scholar 

  11. Chan, C.S.M. and Tye, B.-K. 1983. Organisation of DNA sequences and replication origins at yeast telomeres. Cell 33:563–573.

    Article  CAS  Google Scholar 

  12. Clark-Walker, G.D. 1985 Basis of diversity in mitochondrial DNAs, p. 277–297. In: The Evolution of Genome Size, Cavalier Smith, T. (Ed.). John Wiley & Sons, NY.

    Google Scholar 

  13. Tipper, D.J. and Bostian, K.A. 1984. Double stranded ribonucleic acid killer systems in yeasts. Mic Revs 48:125–156.

    CAS  Google Scholar 

  14. Gunge, N. 1983. Yeast DNA plasmids. Ann. Rev. Micro. 37:253–276.

    Article  CAS  Google Scholar 

  15. Carle, G.F. and Olson, M.V. 1985 An electrophoretic karyotype for yeast. Proc. Natl. Acad. Sci. USA 82:3756–3760.

    Article  CAS  Google Scholar 

  16. Schwartz, D.C. and Cantor, C.R. 1984. Separation of yeast chromosome sized DNAs by pulsed field gel electrophoresis. Cell 37:67–75.

    Article  CAS  Google Scholar 

  17. De Jonge, P., De Jonge, C.M., Meijers, R., Steemsa, H.Y. and Scheffers, W.A. 1986 Orthogonal-field-alternation gel electrophoresis banding patterns from yeasts. Yeast 2:193–204.

    Article  CAS  Google Scholar 

  18. Hamada, H. and Kanuga, T. 1982 Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298:396–398.

    Article  CAS  Google Scholar 

  19. Haniford, D.B. and Pulleybank, D.E. 1983. Facile transition of poly[d(TG).d(AC)] into left-handed helix in physiological conditions. Nature 302:632–634.

    Article  CAS  Google Scholar 

  20. Walmsley, R.M., Szostak, J. W. and Petes, T. D. 1983. Is there left-handed DNA at the ends of yeast chromosomes? Nature 302:84–86.

    Article  CAS  Google Scholar 

  21. Walmsley, R.M. 1987. Yeast telomeres; the end of the chromosome story? Yeast 3:139–148.

    Article  CAS  Google Scholar 

  22. Walmsley, R.M., Chan, C.S.M., Tye, B.-K. and Petes, T. D. 1984. Unusual sequences associated with the ends of yeast chromosomes. Nature 310:157–160.

    Article  CAS  Google Scholar 

  23. Murphy, K.E. and Stringer, J.E. 1986. RecA-independent recombination of poly[d (GT).d(CA)] in pBR322 Nucl Acid Res. 14:7325–7340

    Article  CAS  Google Scholar 

  24. Treco, D., Thomas, B. and Arnheim, N. 1985. Recombination hotspot in the human b globin gene cluster: meiotic recombination of human DNA fragments in Saccharomyces cerevisiae . Mol. Cell Biol. 5:2029–2038.

    Article  CAS  Google Scholar 

  25. Walmsley, R.M. and Petes, T.D. 1985. Genetic control of chromosome length in yeast. Proc. Natl. Acad. Sci. USA 82:506–510.

    Article  CAS  Google Scholar 

  26. Zakian, V.A. and Blanton, H. 1988. Distribution of telomere-associated sequences on natural chromosomes in Saccharomyces cerevisiae . Mol. Cell Biol. 8:2257–2260.

    Article  CAS  Google Scholar 

  27. Horowitz, H., Thorburn, P. and Haber, J.E. 1984. Rearrangements of highly polymorhic regions near telomeres of Saccharomyces cerevisiae . Mol. Cell Biol. 4:2509–2517.

    Article  CAS  Google Scholar 

  28. Sherman, F., Fink, G.R. and Hicks, J.B. 1986. Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  29. Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.

    Article  CAS  Google Scholar 

  30. Maniatis, T., Fritsh, E.F. and Sambrook, J. 1982 Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walmsley, R., Wikinson, B. & Kong, T. Genetic Fingerprinting for Yeasts. Nat Biotechnol 7, 1168–1170 (1989). https://doi.org/10.1038/nbt1189-1168

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1189-1168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing