Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An in vitro fluorescence screen to identify antivirals that disrupt hepatitis B virus capsid assembly

Abstract

Virus assembly has not been routinely targeted in the development of antiviral drugs, in part because of the lack of tractable methods for screening in vitro. We have developed an in vitro assay of hepatitis B virus (HBV) capsid assembly, based on fluorescence quenching of dye-labeled capsid protein, for testing potential inhibitors. This assay is adaptable to high-throughput screening and can identify small-molecule inhibitors of virus assembly that prevent, inappropriately accelerate and/or misdirect capsid formation to yield aberrant particles. An in vitro primary screen has the advantage of identifying promising lead compounds affecting assembly without the requirement that they be taken up by cells in culture and be nontoxic. Our approach may facilitate the identification of antivirals targeting viruses other than HBV, such as avian influenza and HIV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strong correlation of real-time light scattering and fluorescence signals for assembly of BODIPY-FL–labeled C150.
Figure 2: Fluorescence quenching correlates with size-exclusion chromatography at equilibrium.
Figure 3: Quenching is dominated by interactions between dimers in trans, and occurs across vertices.
Figure 4: Fluorescence quenching in a microtiter plate format is sensitive to assembly misdirection and inhibition.

Similar content being viewed by others

References

  1. Previsani, N. & Lavanchy, D. Hepatitis B (Epidemic and Pandemic Alert and Response, World Health Organization, Geneva, 2002). http://www.who.int/csr/disease/hepatitis/whocdscsrlyo20022/en/

  2. Ganem, D. Hepadnaviridae and their replication. in Fields virology (eds. Fields, B.N. et al.) 2703–2737, (Lippincott–Raven Publishers, Philadelphia, 1996).

    Google Scholar 

  3. Summers, J. & Mason, W.S. Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell 29, 403–415 (1982).

    Article  CAS  Google Scholar 

  4. Wingfield, P.T., Stahl, S.J., Williams, R.W. & Steven, A.C. Hepatitis core antigen produced in Escherichia coli: subunit composition, conformational analysis, and in vitro capsid assembly. Biochemistry 34, 4919–4932 (1995).

    Article  CAS  Google Scholar 

  5. Nassal, M., Rieger, A. & Steinau, O. Topological analysis of the hepatitis B virus core particle by cysteine-cysteine cross-linking. J. Mol. Biol. 225, 1013–1025 (1992).

    Article  CAS  Google Scholar 

  6. Zhou, S. & Standring, D.N. Hepatitis B virus capsid particles are assembled from core-protein dimer precursors. Proc. Natl. Acad. Sci. USA 89, 10046–10050 (1992).

    Article  CAS  Google Scholar 

  7. Zlotnick, A., Johnson, J.M., Wingfield, P.W., Stahl, S.J. & Endres, D. A theoretical model successfully identifies features of hepatitis B virus capsid assembly. Biochemistry 38, 14644–14652 (1999).

    Article  CAS  Google Scholar 

  8. Ceres, P. & Zlotnick, A. Weak protein-protein interactions are sufficient to drive assembly of hepatitis B virus capsids. Biochemistry 41, 11525–11531 (2002).

    Article  CAS  Google Scholar 

  9. Stray, S., Ceres, P. & Zlotnick, A. Zinc ions trigger conformational change and oligomerization of hepatitis B virus capsid protein. Biochemistry 43, 9989–9998 (2004).

    Article  CAS  Google Scholar 

  10. Stray, S. et al. A heteroaryldihydropyrimidine activates and can misdirect hepatitis B virus capsid assembly. Proc. Natl. Acad. Sci. USA 102, 8138–8143 (2005).

    Article  CAS  Google Scholar 

  11. Zlotnick, A. Are weak protein–protein interactions the general rule in capsid assembly? Virology 315, 269–274 (2003).

    Article  CAS  Google Scholar 

  12. Singh, S. & Zlotnick, A. Observed hysteresis of virus capsid disassembly is implicit in fundamental kinetic models of association and dissociation. J. Biol. Chem. 278, 18249–18255 (2003).

    Article  CAS  Google Scholar 

  13. Weber, O. et al. Inhibition of human hepatitis B (HBV) by a novel non-nucleosidic compound in a transgenic mouse model. Antiviral Res. 54, 69–78 (2002).

    Article  CAS  Google Scholar 

  14. Deres, K. et al. Inhibition of hepatitis B virus replication by drug induced depletion of nucleocapsids. Science 299, 893–896 (2003).

    Article  CAS  Google Scholar 

  15. Hacker, H., Deres, K., Mildenberger, M. & Schroder, C. Antivirals interacting with hepatitis B virus core protein and core mutations may misdirect capsid assembly in a similar fashion. Biochem. Pharmacol. 66, 2273–2279 (2003).

    Article  CAS  Google Scholar 

  16. Zlotnick, A. et al. Localization of the C terminus of the assembly domain of hepatitis B virus capsid protein: implications for morphogenesis and organization of encapsidated RNA. Proc. Natl. Acad. Sci. USA 94, 9556–9561 (1997).

    Article  CAS  Google Scholar 

  17. Wynne, S.A., Crowther, R.A. & Leslie, A.G. The crystal structure of the human hepatitis B virus capsid. Mol. Cell 3, 771–780 (1999).

    Article  CAS  Google Scholar 

  18. Nassal, M. Conserved cysteines of the hepatitis B virus core protein are not required for assembly of replication-competent core particles nor for their envelopment. Virology 190, 499–505 (1992).

    Article  CAS  Google Scholar 

  19. Bergström, F. et al. Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and biology. J. Am. Chem. Soc. 124, 196–204 (2002).

    Article  Google Scholar 

  20. Johnson, I., Kang, H. & Haugland, R. Fluorescent probes incorporating dipyrrometheneboron difluoride fluorophores. Anal. Biochem. 198, 228–237 (1991).

    Article  CAS  Google Scholar 

  21. Ceres, P., Stray, S. & Zlotnick, A. Hepatitis B virus capsid assembly is enhanced by naturally occurring mutation F97L. J. Virol. 78, 9538–9543 (2004).

    Article  CAS  Google Scholar 

  22. de Clercq, E. Antivirals and antiviral strategies. Nat. Rev. Microbiol. 2, 704–720 (2004).

    Article  CAS  Google Scholar 

  23. Zlotnick, A. & Stray, S. How does your virus grow? Understanding and interfering with virus assembly. Trends Biotechnol. 21, 536–542 (2003).

    Article  CAS  Google Scholar 

  24. Harris, A., Forouhar, F., Qiu, S., Sha, B. & Luo, M. The crystal structure of the influenza matrix protein M1 at neutral pH: M1-M1 protein interfaces can rotate in the oligomeric structures of M1. Virology 289, 34–44 (2001).

    Article  CAS  Google Scholar 

  25. Kunkel, M., Lorinczi, M., Rijnbrand, R., Lemon, S. & Watowich, S. Self-assembly of nucleocapsid-like particles from recombinant hepatitis C virus core protein. J. Virol. 75, 2119–2129 (2001).

    Article  CAS  Google Scholar 

  26. Campbell, S. & Vogt, V. Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1. J. Virol. 69, 6487–6497 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zlotnick, A. et al. Dimorphism of hepatitis B virus capsids is strongly influenced by the C-terminus of the capsid protein. Biochemistry 35, 7412–7421 (1996).

    Article  CAS  Google Scholar 

  28. Zlotnick, A., Ceres, P., Singh, S. & Johnson, J.M. A small molecule inhibits and misdirects assembly of hepatitis B virus capsids. J. Virol. 76, 4848–4854 (2002).

    Article  CAS  Google Scholar 

  29. Zlotnick, A. Theoretical aspects of virus capsid assembly. J. Mol. Recognit. 18, 479–490 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Research Scholar Grant (RSG-99-339-04-MBC) from the American Cancer Society and National Institutes of Health Grant R01-AI067417. We thank Sheryl Christofferson of the Oklahoma Medical Research Foundation Sequencing Core Facility, Bruce Baggenstoss of the OUHSC EPSCOR Mass Spectrometry Facility, Pablo Ceres for assistance with design of mutagenic primers, Christina Bourne for distance determinations from structural data and Laura Buford, Brian Firestone and Quincie Phan for excellent technical assistance. We thank Gillian Air for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Zlotnick.

Ethics declarations

Competing interests

A provisional patent has been issued based on this work.

Supplementary information

Supplementary Fig. 1

Assembly of C150BO. (PDF 930 kb)

Supplementary Fig. 2

Absorbance of assembled and unassembled C150:C150BO mixtures. (PDF 124 kb)

Supplementary Table 1

Comparison of capsid stability (KDapp) of Cp149 wild-type and C150BO. (PDF 66 kb)

Supplementary Table 2

Mutagenic primers. (PDF 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stray, S., Johnson, J., Kopek, B. et al. An in vitro fluorescence screen to identify antivirals that disrupt hepatitis B virus capsid assembly. Nat Biotechnol 24, 358–362 (2006). https://doi.org/10.1038/nbt1187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing