Article | Published:

Cell-specific targeting of nanoparticles by multivalent attachment of small molecules

Subjects

Abstract

Nanomaterials with precise biological functions have considerable potential for use in biomedical applications. Here we investigate whether multivalent attachment of small molecules can increase specific binding affinity and reveal new biological properties of such nanomaterials. We describe the parallel synthesis of a library comprising 146 nanoparticles decorated with different synthetic small molecules. Using fluorescent magnetic nanoparticles, we rapidly screened the library against different cell lines and discovered a series of nanoparticles with high specificity for endothelial cells, activated human macrophages or pancreatic cancer cells. Hits from the last-mentioned screen were shown to target pancreatic cancer in vivo. The method and described materials could facilitate development of functional nanomaterials for applications such as differentiating cell lines, detecting distinct cellular states and targeting specific cell types.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Whitesides, G.M. The 'right' size in nanobiotechnology. Nat. Biotechnol. 21, 1161–1165 (2003).

  2. 2

    Nam, J.M., Thaxton, C.S. & Mirkin, C.A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003).

  3. 3

    Tsapis, N., Bennett, D., Jackson, B., Weitz, D.A. & Edwards, D.A. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc. Natl. Acad. Sci. USA 99, 12001–12005 (2002).

  4. 4

    Gao, X. & Nie, S. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol. 21, 371–373 (2003).

  5. 5

    Zorov, D.B., Kobrinsky, E., Juhaszova, M. & Sollott, S.J. Examining intracellular organelle function using fluorescent probes: from animalcules to quantum dots. Circ. Res. 95, 239–252 (2004).

  6. 6

    Santra, S., Yang, H., Holloway, P.H., Stanley, J.T. & Mericle, R.A. Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J. Am. Chem. Soc. 127, 1656–1657 (2005).

  7. 7

    Huber, M.M. et al. Fluorescently detectable magnetic resonance imaging agents. Bioconjug. Chem. 9, 242–249 (1998).

  8. 8

    Modo, M. et al. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21, 311–317 (2004).

  9. 9

    Josephson, L., Kircher, M.F., Mahmood, U., Tang, Y. & Weissleder, R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug. Chem. 13, 554–560 (2002).

  10. 10

    Kircher, M.F., Weissleder, R. & Josephson, L. A dual fluorochrome probe for imaging proteases. Bioconjug. Chem. 15, 242–248 (2004).

  11. 11

    Wu, Y., Xiang, J., Yang, C., Lu, W. & Lieber, C.M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61–65 (2004).

  12. 12

    Kang, H.W., Josephson, L., Petrovsky, A., Weissleder, R. & Bogdanov, A., Jr. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug. Chem. 13, 122–127 (2002).

  13. 13

    Hogemann, D., Ntziachristos, V., Josephson, L. & Weissleder, R. High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes. Bioconjug. Chem. 13, 116–121 (2002).

  14. 14

    Akerman, M.E., Chan, W.C., Laakkonen, P., Bhatia, S.N. & Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA 99, 12617–12621 (2002).

  15. 15

    Kelly, K.A. et al. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ. Res. 96, 327–336 (2005).

  16. 16

    Harisinghani, M.G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).

  17. 17

    Boullier, A. et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann. NY Acad. Sci. 947, 214–222, discussion 222–213 (2001).

  18. 18

    Denis, M.C., Mahmood, U., Benoist, C., Mathis, D. & Weissleder, R. Imaging inflammation of the pancreatic islets in type 1 diabetes. Proc. Natl. Acad. Sci. USA 101, 12634–12639 (2004).

  19. 19

    Libby, P. & Aikawa, M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat. Med. 8, 1257–1262 (2002).

  20. 20

    Pham, W., Kircher, M.F., Weissleder, R. & Tung, C.H. Enhancing membrane permeability by fatty acylation of oligoarginine peptides. Chem. BioChem. 5, 1148–1151 (2004).

  21. 21

    Anderson, D.G., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat. Biotechnol. 22, 863–866 (2004).

  22. 22

    Goodman, C.M., McCusker, C.D., Yilmaz, T. & Rotello, V.M. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 15, 897–900 (2004).

  23. 23

    Mammen, M., Chio, S-K. & Whitesides, G.M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Edn Engl. 37, 2755–2794 (1998).

  24. 24

    Schreiber, S.L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

  25. 25

    Shen, T., Weissleder, R., Papisov, M., Bogdanov, A., Jr. & Brady, T.J. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn. Reson. Med. 29, 599–604 (1993).

  26. 26

    Wunderbaldinger, P., Josephson, L. & Weissleder, R. Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. Acad. Radiol. (suppl. 2) 9, S304–S306 (2002).

  27. 27

    Kelly, K.A., Reynolds, F., Weissleder, R. & Josephson, L. Fluorescein isothiocyanate-hapten immunoassay for determination of peptide-cell interactions. Anal. Biochem. 330, 181–185 (2004).

  28. 28

    de Hoon, M.J., Imoto, S., Nolan, J. & Miyano, S. Open source clustering software. Bioinformatics 20, 1453–1454 (2004).

  29. 29

    Saldanha, A.J. Java Treeview—extensible visualization of microarray data. Bioinformatics 20, 3246–3248 (2004).

Download references

Acknowledgements

The authors would like to acknowledge the help of Fred Reynolds for synthesizing the CLIO-peptide conjugates, Jan Grimm for radiolabelling, Terry O'Loughlin for molecular modeling and nanoparticle characterization and Jose-Luis Figueiredo, Rabi Upadhyay and Gregory Wojtkiewicz for technical assistance.

Author information

Competing interests

The authors declare no competing financial interests.

Correspondence to Ralph Weissleder.

Supplementary information

  1. Supplementary Table 1

    List of Compounds Conjugated to Nanoparticles (PDF 212 kb)

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Further reading

Figure 1: Nanoparticle and derived-nanoparticle library.
Figure 2: Heat map representing cellular uptake of different nanoparticle preparations.
Figure 3: Nanoparticle 'hits' identified from the large screen (Fig. 2) were probed against resting and activating macrophages.
Figure 4: Targeting experiments.
Figure 5: In vivo targeting experiments.
Figure 6: In vivo targeting experiments similar to those described in Figure 5 but with different fluorochrome-labeled nanoparticles (same acquisition parameters in each column).