Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Design of thermolabile bacteriophage repressor mutants by comparative molecular modeling

Abstract

Comparative molecular modeling was performed with repressor protein Rro of the temperate Lactococcus lactis bacteriophage r1t using the known 3D-structures of related repressors in order to obtain thermolabile derivatives of Rro. Rro residues presumed to stabilize a nonhomologous but structurally conserved hydrophobic pocket, which was shown to be important for thermostability of the Escherichia coli bacteriophage lambda repressor Cl, were randomized. Of the derivatives that exhibited various temperature-sensitive phenotypes, one was shown to hold promise for both fundamental and industrial applications that require the controlled production of (heterologous) proteins in L. lactis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kok, J. 1993. Genetics of proteolytic enzymes of lactococci and their role in cheese flavor development. J. Dairy. Sci. 76: 2056–2064.

    Article  CAS  Google Scholar 

  2. Visser, S. 1993. Proteolytic enzymes and their relation to cheese ripening and flavor: an overview. J. Dairy. Sci. 76: 329–350.

    Article  CAS  Google Scholar 

  3. Crow, V.L., Coolbear, T., Gopal, P.K., Martley, F.G., McKay, L.L., and Riepe, H. 1995. The role of autolysis of lactic acid bacteria in the ripening of cheese. Int. Dairy. J. 5: 855–875.

    Article  CAS  Google Scholar 

  4. Fox, P.F., Wallace, J.M., Morgan, S., Lynch, C.M., Niland, E.J., and Tobin, J. 1996. Acceleration of cheese ripening. Antonie van Leeuwenhoek 70: 271–297.

    Article  CAS  PubMed  Google Scholar 

  5. Van Rooijen, R.J., Gasson, M.J. and de Vos, W.M. 1992. Characterization of the-promoter of the Lactococcus lactis lactose operon: contribution of flanking sequences and LacR repressor to its activity. J. Bacteriol. 174: 2273–2280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Ruyter, P.G.G.A., Kuipers, O.P., and de Vos, W.M. 1996. Controlled gene expression systems for Lactococcus lactiswith the food-grade inducer nisin. Appl. Environ. Microbiol. 62: 3662–3667.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. O'Sullivan, D.J., Walker, S.A., West, S.G., and Klaenhammer, T.R. 1996. Development of an explosive expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression. Bio/Technology 14: 82–87.

    CAS  Google Scholar 

  8. Hendrix, R.W., Roberts, J.W., Stahl, F.W., and Weisberg, R.A. (eds.) 1983. Lambda II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  9. Rosenberg, M., Ho, Y.-S., and Shatzman, A.R. 1983. The use of pKC30 and its derivatives for controlled expression of genes. Methods Enzymol. 101: 123–138.

    Article  CAS  PubMed  Google Scholar 

  10. Shatzman, A.R., and Rosenberg, M. 1986. Efficient expression of heterologous genes in Escherichia coli: the pAS vector system and its applications. Ann. NX Acad. Sci. 478: 233–248.

    Article  CAS  Google Scholar 

  11. Pabo, C.O., Sauer, R.T., Sturtevant, J.M., and Ptashne, M. 1979. The repressor contains two domains. Proc. Natl. Acad. Sci. USA 76: 1608–1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Little, R.J. 1993. LexA cleavage and other self-processing reactions. J. Bacteriol. 175: 4943–4950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pabo, C.O. and Sauer, R.T. 1992. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61: 1053–1095.

    Article  CAS  PubMed  Google Scholar 

  14. Pabo, C.O. and Lewis, M. 1982. The operator-binding domain of repressor: structure and DNA recognition. Nature 298: 443–447.

    Article  CAS  PubMed  Google Scholar 

  15. Nauta, A., van Sinderen, D., Karsens, H., Venema, G., and Kok, J. 1996. Inducible gene expression mediated by a repressor-operator system isolated from Lactococcus lactis bacteriophage rlt. Mol. Microbiol. 19: 1331–1341.

    Article  CAS  PubMed  Google Scholar 

  16. Beamer, L.J. and Pabo, C.O. 1992. Refined 1.8 Å crystal structure of the lambda repressor-operator complex. J. Mol. Biol. 227: 177–196.

    Article  CAS  PubMed  Google Scholar 

  17. Aggarwal, A.K., Rodgers, D.W., Drottar, M., Ptashne, M., and Harrison, S.C. 1988. Recognition of a DNA operator by the repressor of phage 434: A view at high resolution. Science 242: 899–907.

    Article  CAS  PubMed  Google Scholar 

  18. Lieb, M. 1981. A fine structure map of spontaneous and induced mutations in the lambda repressor gene, including insertions of IS elements. Mol. Gen. Genet. 184: 364–371.

    Article  CAS  PubMed  Google Scholar 

  19. Vriend, G. 1990. WHAT IF, a molecular modeling and drug design program. J. Mol. Graph. 8: 52–56.

    Article  CAS  PubMed  Google Scholar 

  20. Reidhaar-Olson, J.F. and Sauer, R.T. 1990. Functionally acceptable substitutions in two α-helical regions of λ repressor. Proteins 7: 306–316.

    Article  CAS  PubMed  Google Scholar 

  21. Hecht, M.H., Sturtevant, J.M., and Sauer, R.T. 1984. Effect of single amino acid replacements on the thermal stability of the NH2-terminal domain of phage λ repressor. Proc. Natl. Acad. Sci. USA 81: 5658–5689.

    Article  Google Scholar 

  22. Varadarajan, R., Nagarajaram, H.A., and Ramakrishnan, C. 1996. A procedure for the prediction of temperature-sensitive mutants of a globular protein based solely on the amino acid sequence. Proc. Natl. Acad. Sci. USA 93: 13908–13913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Casadaban, M.J. and Cohen, S.N. 1980. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol. 138: 179–207.

    Article  CAS  PubMed  Google Scholar 

  24. Rottlander, E. and Trautner, T.A. 1970. Genetic and transfection studies with Bacillus subtilis phage SP50. J. Mol. Biol. 108: 47–60.

    CAS  Google Scholar 

  25. Leenhouts, K.J. and Venema, G. 1993. Lactococcal plasmid vectors, pp. 65–94 in Plasmids, A Practical Approach.Hardy, K.G. (ed.) Oxford University Press, Oxford, UK.

    Google Scholar 

  26. Terzaghi, B.E. and Sandine, W.E. 1975. Improved medium for lactic streptococci and their bacteriophages. Appl. Microbiol. 29: 807–813.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Birnboim, H.C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids. Res. 7: 1513–1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mandel, M. and Higa, A. 1970. Calcium-dependent bacteriophage DNA infection. J. Mol. Biol. 53: 159–162.

    Article  CAS  PubMed  Google Scholar 

  29. Rost, B. and Sander, C. 1993. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232: 584–599.

    Article  CAS  PubMed  Google Scholar 

  30. Miller, J. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  31. Laemmli, U.K. 1979. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nauta, A., Burg, B., Karsens, H. et al. Design of thermolabile bacteriophage repressor mutants by comparative molecular modeling. Nat Biotechnol 15, 980–983 (1997). https://doi.org/10.1038/nbt1097-980

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1097-980

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing