Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A two-component expression system that responds to inflammatory stimuli in vivo

Abstract

A therapeutic dilemma often complicates the management of inflammatory diseases; the benefits gained from reducing inflammation must be balanced against the potentially harmful consequences of chronic immunosuppression. Gene therapy might address this dilemma by producing anti-inflammatory proteins in response to a patient's endogenous signals, so that recombinant drug production is linked to the intensity and duration of the inflammatory condition. To test this, we have developed inflammation-inducible systems for regulating recombinant protein production in vivo. We describe a two-component expression construct in which (1) the murine complement factor 3 (C3) promoter regulates production of the human immunodeficiency virus (HIV) transactivator of transcription (Tat), and (2) the Tat protein then stimulates protein expression from genes inserted downstream of the the HIV promoter. When incorporated into a nonreplicating adenovirus (Ad.C3-tat/HIV-luc) and studied in a murine model, the construct produces large amounts of recombinant protein in vivo in response to two different inflammatory stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Varley, A.W., Coulthard, M.G., Meidell, R.S., Gerard, R.D. and Munford, R.S. 1995. Inflammation-induced recombinant protein expression in vivo using promoters from acute phase protein genes. Proc. Natl. Acad. Sci. USA 92: 5346–5350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fantuzzi, G. and Dinarello, C.A. 1996. The inflammatory response in interleukin-1-deficient mice: Comparison with other cytokine-related knock-out mice. J. Leukocyte Biol. 59: 489–493.

    Article  CAS  PubMed  Google Scholar 

  3. Herz, J. and Gerard, R.D. 1993. Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc. Natl. Acad. Sci. USA 90: 2812–2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rogy, M.A., Auffenberg, T., Espat, N.J., Philip, R., Remick, D., Wollenberg, G.K. et al. 1995. Human tumor necrosis factor receptor (p55) and interleukin 10 gene transfer in the mouse reduces mortality to lethal endotoxemia and also attenuates local inflammatory responses. J. Exp. Med. 181: 2289–2293.

    Article  CAS  PubMed  Google Scholar 

  5. Kolls, J., Peppel, K., Silva, M. and Beutler, B. 1994. Prolonged and effective blockade of tumor necrosis factor activity through adenovirus-mediated gene transfer. Proc. Natl. Acad. Sci. USA 91: 215–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Conary, J.T., Parker, R.E., Christman, B.W., Faulks, R.D., King, G.A., Meyrick, B.O. and Brigham, K.L. 1994. Protection of rabbit lungs from endotoxin injury by in vivo hyperexpression of the prostaglandin G/H synthase gene. J. Clin. Invest. 93: 1834–1840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kolls, J.K., Lei, D., Nelson, S., Summer, W.R., Greenberg, S. and Beutler, B. 1995. Adenovirus-mediated blockade of tumor necrosis factor in mice protects against endotoxic shock yet impairs pulmonary host defense. J. Infect. Dis. 171: 570–575.

    Article  CAS  PubMed  Google Scholar 

  8. Greenberger, M.J., Kunkel, S.L., Strieter, R.M., Lukacs, N.W., Bramson, J., Gauldie, J. et al. 1996. IL-12 gene therapy protects mice in lethal Klebsiella pneumonia. J. Immunol. 157: 3006–3012.

    CAS  PubMed  Google Scholar 

  9. Kawamura, N., Singer, L., Wetsel, R.A. and Colten, H.R. 1992. Cis- and transacting elements required for constitutive and cytokine-regulated expression of the mouse complement C3 gene. Biochem. J. 283: 705–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Osborn, L., Kunkel, S. and Nabel, G.J. 1992. Tumor necrosis factor and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor κB. Proc. Natl. Acad. Sci. USA 86: 2336–2340.

    Article  Google Scholar 

  11. Ou, S.-H.l., and Gaynor, R.B. 1992. Intracellular factors involved in gene expression of human retroviruses. pp. 97–184 in The Retroviridae Vol. 4 Levy, J.A. (ed.) Plenum Press, New York, NY.

    Google Scholar 

  12. Huard, J., Lochmüller, H., Acsadi, G., Jani, A., Massie, B. and Karpati, G. 1995. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Therapy 2: 107–115.

    CAS  PubMed  Google Scholar 

  13. Coulthard, M.G., Swindle, J., Munford, R.S., Gerard, R.D. and Meidell, R.S. 1996. Adenovirus-mediated transfer of a gene encoding acyloxyacyl hydrolase (AOAH) into mice increases tissue and plasma AOAH activity. Infect. Immun. 64: 1510–1515.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tripathy, S.K., Black, H.B., Goldwasser, E. and Leiden, J.M. 1996. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nature Medicine 2: 545–550.

    Article  CAS  PubMed  Google Scholar 

  15. Worgall, S., Wolff, G., Falck-Pedersen, E. and Crystal, R.G. 1997. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum. Gene Ther. 8: 37–44.

    Article  CAS  PubMed  Google Scholar 

  16. Ott, M., Emiliani, S., Van Lint, C., Herbein, G., Lovett, J., Chirmule, N. et al. 1997. Immune hyperactivation of HIV-1 -infected T cells mediated by tat and the CD28 pathway. Science 275: 1481–1485.

    Article  CAS  PubMed  Google Scholar 

  17. Scala, G., Ruocco, M.R., Ambrosino, C., Mallardo, M., Giordano, V., Baldassarre, F. et al. 1994. The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J. Exp. Med. 179: 961–971.

    Article  CAS  PubMed  Google Scholar 

  18. Verhoef, K., Klein, A. and Berkhout, B. 1996. Paracrine activation of the HIV-1 LTR promoter by the viral tat protein is mechanistically similar to trans-activation within a cell. Virology 225: 316–327.

    Article  CAS  PubMed  Google Scholar 

  19. Westendorp, M.O., Shatrov, V.A., Schulze-Osthoff, K., Frank, R., Kraft, M., Los, M. et al. 1995. HIV-1 Tat potentiates TNF-induced NF-kB activation and cytotoxicity by altering the cellular redox state. EMBO J. 14: 546–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brigham, K.L. and Stecenko, A.A. 1995. Gene therapy in acute critical illness. New Horizons 3: 321–329.

    CAS  PubMed  Google Scholar 

  21. Garcia, J.A., Wu, F.K., Mitsuyasu, R. and Gaynor, R.B. 1987. Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus. EMBO J. 6: 3761–3770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Andersson, S., Davis, D.N., Dahlback, H., Jornvall, H. and Russell, D.W., 1989. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J. Biol. Chem. 264: 8222–8229.

    CAS  PubMed  Google Scholar 

  23. Gerard, R.D. and Meidell, R.S. 1995. Adenoviral vectors, pp. 285–306 in DNA cloning: A practical approach. Hames, B.D. and Glover, D.M. (eds.) Oxford University Press, Oxford and New York.

    Google Scholar 

  24. Salkowski, C.A., Neta, R., Wynn, T.A., Strassmann, G., Van Rooijen, N. and Vogel, S.N. 1980. Effect of liposome-mediated macrophage depletion on LPS-induced cytokine gene expression and radioprotection. J. Immunol. 155: 3168–3179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varley, A., Geiszler, S., Gaynor, R. et al. A two-component expression system that responds to inflammatory stimuli in vivo. Nat Biotechnol 15, 1002–1006 (1997). https://doi.org/10.1038/nbt1097-1002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1097-1002

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing