Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Modifying the insect cell N-glycosylation pathway with immediate early baculovirus expression vectors

Abstract

The baculovirus-insect cell expression system is well-suited for recombinant glycoprotein production because baculovirus vectors can provide high levels of expression and insect cells can modify newly synthesized proteins in eucaryotic fashion. However, the N-glycosylation pathway of baculovirus-infected insect cells differs from the pathway found in higher eucaryotes, as indicated by the fact that glycoproteins produced in the baculovirus system typically lack complex biantennary N-linked oligosaccharide side chains containing penultimate galactose and terminal sialic acid residues. We recently developed a new type of baculovirus vector that can express foreign genes immediately after infection under the control of the viral ie 1 promoter. These immediate early baculovirus expression vectors can be used to modify the insect cell N-glycosylation pathway and produce a foreign glycoprotein with more extensively processed N-linked oligosaccharides. These vectors can also be used to study the influence of the late steps in N-linked oligosaccharide processing on glycoprotein function. Further development could lead to baculovirus-insect cell expression systems that can produce recombinant glycoproteins with complex biantennary N-linked oligosaccharides structurally identical to those produced by higher eucaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Summers, M.D. and Smith, G.E. 1987. A manual of methods for bacubvirvs vectors and insect cell culture procedures. Texas Agricultural Experiment Station Bulletin No. 1555.

    Google Scholar 

  2. Jarvis, D.L. and Summers, M.D. 1992. Baculovirus expression vectors, pp. 265–291 in Recombinant DNA vaccines: rationale and strategies. Isaacson, R.E. (ed.). Marcel Dekker, Inc., New York.

    Google Scholar 

  3. O'Reilly, D.R., Miller, L.K., and Luckow, V.A. 1992. Baculovirus expression vectors: a laboratory manual. W.H. Freeman and Company, New York.

    Google Scholar 

  4. Kornfeld, R. and Kornfeld, S. 1985. Assembly of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 54: 631–664.

    Article  CAS  PubMed  Google Scholar 

  5. Jarvis, D.L. and Garcia, A., Jr. 1994. Biosynthesis and processing of the Autographa califomica nuclear polyhedrosis virus gp64 protein. Virology 205: 300–313.

    Article  CAS  PubMed  Google Scholar 

  6. Ren, J., Bretthauer, R., and Castellino, F.J. 1995. Purification and properties of a golgi-derived (α-1,2)-mannosidase-l from baculovirus-infected lepidopteran insect cells (IPLB-Sf21AE) with preferential activity towards mannose6-N-acetyl-glucosamine. Biochemistry 34: 2489–2495.

    Article  CAS  PubMed  Google Scholar 

  7. Altmann, F., Kornfeld, G., Dalik, T., Staudacher, E., and Glossl, J. 1993. Processing of asparagine-linked oligosaccharides in insect cells. N-acetylglucosaminyltrans-ferase I and II activities in cultured lepidopteran cells. Glycobiology 3: 619–625.

    Article  CAS  PubMed  Google Scholar 

  8. Velardo, M.A., Bretthauer, R.K., Boutaud, A., Reinhold, B., Reinhold, V.N., and Castellino, F.J. 1993. The presence of UDP-N-acetylglucosamine:α-3-D-manno-side β-1,2-N-acetylglucosaminyl transferase I activity in Spodoptera frugiperda cells (IPLB-SF-21AE) and its enhancement as a result of bacubvirus infection. J. Biol. Chem. 268: 17902–17907.

    CAS  PubMed  Google Scholar 

  9. Altmann, F. and Marz, L. 1995. Processing of asparagine-linked oligosaccharides in insect cells: evidence for α-mannosidase II. Glycoconjugate J. 12: 150–155.

    Article  CAS  Google Scholar 

  10. Jarvis, D.L., Bohlmeyer, D.A., Liao, Y.-F., Lomax, K., Merkle, R., Weinkauf, C., et al. 1996. Isolation and characterization of a class II α-mannosidase cDNA from lepidopteran insect cells. Glycobiology. In press.

    Google Scholar 

  11. Butters, T.D. and Hughes, R.C. 1981. Isolation and characterization of mosquito cell membrane glycoproteins. Biochim. Biophys. Acta 640: 655–671.

    Article  CAS  PubMed  Google Scholar 

  12. Hsieh, P. and Robbins, P.W. 1984. Regulation of asparagine-linked oligosaccha-ride processing. Oligosaccharide processing in Aedes albopictus mosquito cells. J. Biol. Chem. 259: 2375–2382.

    CAS  PubMed  Google Scholar 

  13. Ryan, R.O., Anderson, D.R., Grimes, W.J., and Law, J.H. 1985. Arylphorin from Manduca sexta: carbohydrate structure and immunological studies. Arch. Biochem. Biophys. 243: 115–124.

    Article  CAS  PubMed  Google Scholar 

  14. Nagao, E., Takahashi, N., and Chino, H. 1987. Asparagine-linked oligosaccharides of locust lipophorin. Insect Biochem. 17: 531–538.

    Article  CAS  Google Scholar 

  15. Kuroda, K., Geyer, H., Geyer, R., Doerfler, W., and Klenk, H.-D. 1990. The oligosaccharides of influenza virus hemagglutinin expressed in insect cells by a baculovirus vector. Virology 174: 418–429.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, W., Shen, Q.-X., and Bahl, O.P. 1991. Carbohydrate variant of the recombinant β-subunit of human choriogonadotropin expressed in baculovirus expression system. J. Biol. Chem. 266: 4081–4087.

    CAS  PubMed  Google Scholar 

  17. Wathen, M.W., Aeed, P.A., and Elhammer, A.P. 1991. Characterization of oligo-saccharide structures on a chimeric respiratory syncytial virus protein expressed in insect cell line Sf9. Biochemistry 30: 2863–2868.

    Article  CAS  PubMed  Google Scholar 

  18. Williams, P.J., Wormald, M.R., Dwek, R.A., Rademacher, T.W., Parker, G.F., and Roberts, D.B. 1991. Characterization of oligosaccharides from Drosophila melanogaster glycoproteins. Biochim. Biophys. Acta 1075: 146–153.

    Article  CAS  PubMed  Google Scholar 

  19. Knepper, T.P., Arbogast, B., Schreurs, J., and Deinzer, M.L. 1992. Determination of the glycosylation patterns, disulfide linkages, and protein heterogeneities of baculovirus-expressed mouse interleukin-3 by mass spectrometry. Biochemistry 31: 11651–11659.

    Article  CAS  PubMed  Google Scholar 

  20. Grabenhorst, E., Hofer, B., Nimtz, M., Jager, V., and Conradt, H.S. 1993. Biosynthesis and secretion of human interleukin 2 glycoprotein variants from baculovirus-infected Sf21 cells. Characterization of polypeptides and posttranslational modifications. Eur. J. Biochem. 215: 189–197.

    Article  CAS  PubMed  Google Scholar 

  21. Yeh, J.-C., Seals, J.R., Murphy, C.I., van Halbeek, H., and Cummings, R.D. 1993. Site-specific N-glycosylation and Oligosaccharide structures of recombinant HIV-1 gp120 derived from a baculovirus expression system. Biochemistry 32: 11087–11099.

    Article  CAS  PubMed  Google Scholar 

  22. Kubelka, V., Altmann, F., Kornfeld, G., and Marz, L. 1994. Structures of the N-linked oligosaccharides of the membrane glycoproteins from three lepidopteran cell lines (Sf-21, IZD-Mb-0503, Bm-N). Arch. Biochem. Biophys. 308: 148–157.

    Article  CAS  PubMed  Google Scholar 

  23. Manneberg, M., Friedlein, A., Kurth, H., Lahm, H.-W., and Fountoulakis, M. 1994. Structural analysis and localization of the carbohydrate moieties of a soluble human interferon G receptor produced in baculovirus-infected insect cells. Protein Science 3: 30–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Licari, P., Jarvis, D.L., and Bailey, J.E. 1993. Insect cell hosts for baculovirus expression vectors contain endogenous exoglycosidase activity. Biotech. Prog. 9: 146–152.

    Article  CAS  Google Scholar 

  25. Altmann, F., Schwihla, H., Staudacher, E., Glossl, J., and Marz, L. 1995. Insect cells contain an unusual, membrane-bound β-N-acetylglu-cosaminidase probably involved in the processing of protein N-glycans. J. Biol. Chem. 270: 17344–17349.

    Article  CAS  PubMed  Google Scholar 

  26. Wagner, R., Geyer, H., Geyer, R., and Klenk, H.-D. 1996. N-acetyl-β-gluco-saminidase accounts for differences in glycosylation of influenza virus hemagglutinin expressed in insect cells from a baculovirus vector. J. Virol. 70: 4103–4109.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jarvis, D.L., Weinkauf, C., and Guarino, L.A. 1996. Immediate early baculovirus vectors for foreign gene expression in transformed or infected insect cells. Protein Expression and Purification. In press.

    Google Scholar 

  28. Harduin-Lepers, A., Shaper, J.H., and Shaper, N.L. 1993. Characterization of two cis-regulatory regions in the murine β-1,4-galactosyltransferase gene: evidence for a negative regulatory element that controls initiation at the proximal site. J. Biol. Chem. 268: 14348–14359.

    CAS  PubMed  Google Scholar 

  29. Russo, R.N., Shaper, N.L., Taatjes, D.J., and Shaper, J.H. 1992. Beta-1,4-galac-tosyltransferase: a short NH2-terminal fragment that includes the cytoplasmic and transmembrane domain is sufficient for golgi retention. J. Biol. Chem. 267: 9241–9247.

    CAS  PubMed  Google Scholar 

  30. Guarino, L.A., Gonzalez, M.A., and Summers, M.D. 1986. Complete sequence and enhancer function of the homologous DNA regions of Autographa californica nuclear polyhedrosis virus. J. Virol. 60: 224–229.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodems, S.M. and Friesen, P.D. 1993. The hr5 transcriptional enhancer stimulates early expression from the Autographa californica nuclear polyhedrosis virus genome but is not required for virus replication. J. Virol. 67: 5776–5785.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith, G.E., Fraser, M.J., and Summers, M.D. 1983. Molecular engineering of the Autographa californica nuclear polyhedrosis virus genome: deletion mutations within the polyhedrin gene. J. Virol. 46: 584–593.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Volkman, L.E. 1986. The 64K envelope protein of budded Autographa californica nuclear polyhedrosis virus. Curr. Top. Microbiol. Immunol. 131: 103–118.

    CAS  PubMed  Google Scholar 

  34. Jarvis, D.L., and Finn, E.E. 1995. Biochemical analysis of the N-glycosylation pathway in baculovirus-infected lepidopteran insect cells. Virology 212: 500–511.

    Article  CAS  PubMed  Google Scholar 

  35. Blissard, G.W., and Wenz, J.R. 1992. Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J. Virol. 66: 6829–6835.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Volkman, L.E. and Goldsmith, P.A. 1985. Mechanism of neutralization of budded Autographa californica nuclear polyhedrosis virus by a monoclonal antibody: Inhibition of entry by adsorptive endocytosis. Virology 143: 185–195.

    Article  CAS  PubMed  Google Scholar 

  37. Volkman, L.E., Goldsmith, P.A., Hess, R.T., and Faulkner, P. 1984. Neutralization of budded Autographa californica NPV by a monoclonal antibody: Identification of the target antigen. Virology 133: 354–362.

    Article  CAS  PubMed  Google Scholar 

  38. Lee, E.U., Roth, J., and Paulson, J.C. 1989. Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of beta-galactoside alpha 2,6-sialyltransferase. J. Biol. Chem. 264: 13848–13855.

    CAS  PubMed  Google Scholar 

  39. Minch, S.L., Kallio, P.T., and Bailey, J.E. 1995. Tissue plasminogen activator coexpressed in Chinese hamster ovary cells with alpha(2,6)-sialyltransferase contains NeuAc alpha(2,6)Gal beta(1,4)Glc-N-AcR linkages. Biotechnol. Prog. 11: 348–351.

    Article  CAS  PubMed  Google Scholar 

  40. Grabenhorst, E., Hoffmann, A., Nimtz, M., Zettlmeissl, G., and Conradt, H.S. 1995. Construction of stable BHK-21 cells coexpressing human secretory glycoproteins and human Gal(β1-4)GlcNAc-R α 2,6-sialyltransferase: α 2,6-linked NeuAc is preferentially attached to the Gal(β1 -4)GlcNAc(β1 -2)Man(α1 -3)-branch of diantennary oligosaccharides from secreted recombinant beta-trace protein. Eur. J. Biochem. 232: 718–725.

    Article  CAS  PubMed  Google Scholar 

  41. Smith, D.F., Larsen, R.D., Mattox, S., Lowe, J.B., and Cummings, R.D. 1990. Transfer and expression of a murine UDP-Gal:beta-D-Gal-alpha 1,3-galactosyl-transferase gene in transfected Chinese hamster ovary cells. Competition reactions between the alpha 1,3-galactosyltransferase and the endogenous alpha 2,3-sialyltransferase. J. Biol. Chem. 265: 6225–6234.

    CAS  PubMed  Google Scholar 

  42. Kalsner, I., Hintz, W., Reid, L.S., and Schachter, H. 1995. Insertion into Aspergillus nidulans of functional UDP-GlcNAc: alpha 3-D- mannoside beta-1,2-N-acetyl-glucosaminyl-transferase I, the enzyme catalysing the first committed step from oligomannose to hybrid and complex N-glycans. Glycoconjugate J. 12: 360–370.

    Article  CAS  Google Scholar 

  43. Jarvis, D.L. 1993. Continuous foreign gene expression in stably-transformed insect cells, pp. 193–217 in Insect cell culture engineering. Goosen, M.F.A., Daugulis, A., and Faulkner, P. (eds.). Marcel Dekker, Inc., New York.

    Google Scholar 

  44. Jarvis, D.L., Fleming, J.G.W., Kovacs, G.R., Summers, M.D., and Guarino, L.A. 1990. Use of early baculovirus promoters for continuous expression and efficient processing of foreign gene products in stably-transformed lepidopteran cells. Bio/Technology 8: 950–955.

    CAS  Google Scholar 

  45. Jarvis, D.L. and Guarino, L.A. 1995. Continuous foreign gene expression in transformed lepidopteran insect cells, pp. 187–202 in Methods in molecular biology Vol39: Baculovirus expression protocols. Richardson, C.D. (ed.). Humana Press, Clifton, N.J.

    Chapter  Google Scholar 

  46. Wagner, R., Liedtke, S., Kretzschmar, E., Geyer, H., Geyer, R., and Klenk, H.-D. 1996. Elongation of the N-glycans of fowl plague virus hemagglutinin expressed in Spodoptera frugiperda (Sf9) cells by coexpression of human β1,2-N-acetylglucosaminyltranferase I. Glycobiology 6: 165–175.

    Article  CAS  PubMed  Google Scholar 

  47. Davidson, D.J. and Castellino, F.J. 1991. Asparagine-linked Oligosaccharide processing in lepidopteran insect cells. Temporal dependence of the nature of the oligosaccharides assembled on asparagine-289 of recombinant human plasminogen produced in baculovirus vector infected Spodoptera frugiperda (IPLB-SF-21AE) cells. Biochemistry 30: 6167–6174.

    Article  CAS  Google Scholar 

  48. Davidson, D.J., Fraser, M.J., and Castellino, F.J. 1990. Oligosaccharide processing in the expression of human plasminogen cDNA by lepidopteran insect (Spodoptera frugiperda) cells. Biochemistry 29: 5584–5590.

    Article  CAS  PubMed  Google Scholar 

  49. Murhammer, D.W. and Goochee, C.F. 1988. Scaleup of insect cell cultures: Protective effects of pluronic F68. Bio/Technology 6: 1411–1418.

    CAS  Google Scholar 

  50. Kitts, P.A. and Possee, R. 1993. A method for producing recombinant baculovirus expression vectors at high frequency. Biotechniques 14: 810–817.

    CAS  PubMed  Google Scholar 

  51. Berger, E.G., Greber, U.F., and Mosbach, K. 1986. Galactosyltransferase-dependent sialylation of complex and endo-N-acetylglucosaminidase H-treated core N-glycans in vitro. FEBS Letters 203: 64–68.

    Article  CAS  PubMed  Google Scholar 

  52. Whiteheart, S.W., Passaniti, A., Reichner, J.S., Holt, G.D., Haltiwanger, R.S., and Hart, G.W. 1989. Glycosyltransferase probes. Methods Enzymol. 179: 82–95.

    Article  CAS  PubMed  Google Scholar 

  53. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D. et al. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76–85.

    Article  CAS  PubMed  Google Scholar 

  54. Hohmann, A.W. and Faulkner, P. 1983. Monoclonal antibodies to baculovirus structural proteins: determination of specificities by Western blot analysis. Virology 125: 432–444.

    Article  CAS  PubMed  Google Scholar 

  55. Jarvis, D.L. and Summers, M.D. 1989. Glycosylation and secretion of human tissue plasminogen activator in recombinant baculovirus-infected insect cells. Mol. Cell. Biol. 9: 214–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  57. Blake, M.S., Johnston, K.H., Russell-Jones, G.J., and Gotschlich, E.C. 1984. A rapid, sensitive method for detection of alkaline phosphatase conjugated anti-antibody on western blot. Anal. Biochem. 36: 175–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarvis, D., Finn, E. Modifying the insect cell N-glycosylation pathway with immediate early baculovirus expression vectors. Nat Biotechnol 14, 1288–1292 (1996). https://doi.org/10.1038/nbt1096-1288

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1096-1288

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing