Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Electrospray Mass Spectrometry Characterization of Post-Translational Modifications of Barley α-Amylase 1 Produced in Yeast

Abstract

We have used electrospray mass spectrometry (ESMS) in combination with protein chemistry and genetics to delineate post-translational modifications in yeast of barley α-amylase 1 (AMY1), a 45 kD enzyme crucial for production of malt, an important starting material in the manufacture of beer and whisky. In addition to signal peptide processing these modifications are: (1) removal of C-terminal Arg-Ser by Kex1p, (2) glutathionylation of Cys95, (3) O-glycosylation, and (4) additional degradation of the C-terminus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tekamp-Olson, P. and Valenzuela, P. 1990. Gene expression and engineering in yeast and other fungi. Curr. Opin. Biotechnol. 1: 28–35.

    Article  CAS  Google Scholar 

  2. Hitzeman, R.A., Chen, C.Y., Dowbenko, D.J., Renz, M.E., Liu, C., Pai, R., Simpson, N.J., Kohr, W.J., Singh, A., Chisholm, V., Hamilton, R. and Chang, C.N. 1990. Use of heterologous and homologous signal sequences for secretion of heterologous proteins from yeast. Meth. Enzymol. 185: 421–440.

    Article  CAS  Google Scholar 

  3. Olsen, O. and Thomsen, K.K. 1991. Improvement of bacterial β-glucanase thermostability by glycosylation. J. Gen. Microbiol. 137: 579–585.

    Article  CAS  Google Scholar 

  4. Shuster, J.R. 1991. Gene expression in yeast: protein secretion. Curr. Opin. Biotechnol. 2: 685–690.

    Article  CAS  Google Scholar 

  5. Taniyama, Y., Seko, C. and Kikuchi, M. 1990. Secretion in yeast of mutant human lysozyme with and without glutathione bound to cysteine 95. J. Biol. Chem. 265: 16767–167710.

    CAS  PubMed  Google Scholar 

  6. Søgaard, M., Olsen, F.L. and Svensson, B. 1991. C-terminal processing of barley α-amylase 1 in malt, aleurone protoplasts, and yeast. Proc. Natl. Acad. Sci. USA 88: 8140–8144.

    Article  Google Scholar 

  7. George-Nascimento, C., Gyenes, A., Halloran, S.M., Merryweather, J., Valenzuela, P., Steimer, K.S., Masiarz, F.R. and Randolph, A. 1988. Characterization of recombinant human epidermal growth factor produced in yeast. Biochemistry 27: 797–802.

    Article  CAS  Google Scholar 

  8. Vlasuk, G.P., Bencen, G.H., Scarborough, R.M., Tsai, P.-K., Whang, J.L., Maack, T., Camargo, M.J.F., Kirsher, S.W. and Abraham, J.A. 1986. Expression and secretion of biologically active human atrial natriuretic peptide in Saccharomyces cerevisiae. J. Biol. Chem. 261: 4789–4796.

    CAS  Google Scholar 

  9. Riehl-Bellon, N., Carvallo, D., Acker, M., VanDorsselaer, A., Marquet, M., Loison, G., Lemoine, Y., Brown, S.W., Courtney, M. and Roitsch, C. 1989. Purification and biochemical characterization of recombinant hirudin produced by Saccharomyces cerevisiae. Biochemistry 28: 2941–2949.

    Article  CAS  Google Scholar 

  10. Roepstorff, P. and Richter, W.J. 1992. Status of, and development in, mass spectrometry of peptides and proteins. Int. J. Mass. Spectrom. Ion Proc. 118/119: 789–809.

    Article  Google Scholar 

  11. Søgaard, M., Kadziola, A., Baser, R. and Svensson, B. 1993. Site-directed mutagenesis of His93, Asp 180, Glu205, His290 and Asp291 at the active site and Trp279 at the raw starch binding site in barley α-amylase. J. Biol. Chem. In press.

  12. Søgaard, M. and Svensson, B. 1990. Expression of cDNAs encoding barley α-amylase 1 and 2 in yeast and characterization of the secreted proteins. Gene 94: 173–179.

    Article  Google Scholar 

  13. Rogers, J.C. and Milliman, C. 1983. Isolation and sequence analysis of a barley α-amylase cDNA clone. J. Biol. Chem. 258: 8169–8174.

    CAS  PubMed  Google Scholar 

  14. Matrix assisted laser desorption ionization mass spectrometric peptide mapping in combination with Edman degradation indicated an error in the published sequence of the clone E cDNA (ref. 13), Val (GTC) being found instead of Ala (GCC) at position 284 of the mature protein, as later confirmed by DNA sequencing (J.S.A., M.S., B.S. and PR., unpublished data).

  15. Svensson, B., Mundy, J., Gibson, R.M. and Svendsen, I. 1985. Partial amino acid sequences of α-amylase isozymes from barley malt. Carlsberg Res. Commun. 50: 15–22.

    Article  CAS  Google Scholar 

  16. Kukuruzinska, M.A., Bergh, M.L.E. and Jackson, B.J. 1987. Protein glycosylation in yeast. Ann. Rev. Biochem. 56: 915–944.

    Article  CAS  Google Scholar 

  17. Tachibana, C. and Stevens, T.H. 1992. The yeast EUG1 gene encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. Mol. Cell. Biol. 12: 4601–4611.

    Article  CAS  Google Scholar 

  18. Dmochowska, A., Dignard, D., Henning, D., Thomas, D.Y. and Bussey, H. 1987. Yeast KEX1 gene encodes a putative protease with a carboxypeptidase B-like function involved in killer toxin and α-factor precursor processing. Cell 50: 573–584.

    Article  CAS  Google Scholar 

  19. Rogers, J.C. 1985. Two barley a-amylase gene families are regulated differently in aleurone cells. J. Biol. Chem. 260: 3731–3738.

    CAS  PubMed  Google Scholar 

  20. Hwang, C., Sinsker, A.J. and Lodish, H.F. 1992. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257: 517–523.

    Google Scholar 

  21. Braakman, I., Helenius, J. and Helenius, A. 1992. Role of ATP and disulfide bonds during protein folding in the endoplasmic reticulum. Nature 356: 260–262.

    Article  CAS  Google Scholar 

  22. Braakman, I., Helenius, J. and Helenius, A. 1992. Manipulating disulfide bond formation in the endoplasmic reticulum. EMBO J. 11: 1717–1722.

    Article  CAS  Google Scholar 

  23. Meister, A. and Anderson, M.E. 1983. Glutathione. Ann. Rev. Biochem. 52: 711–760.

    Article  CAS  Google Scholar 

  24. Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. and Pease, L.R. 1989. Engineering hybrid genes without the use of restriction enzymes: Gene splicing by overlap extension. Gene 77: 61–68.

    Article  CAS  Google Scholar 

  25. Kuipers, O.P., Boot, H.J. and de Vos, W.M. 1991. Improved site-directed mutagenesis method using PCR. Nucl. Acid. Res. 19: 4558–4560.

    Article  CAS  Google Scholar 

  26. Riddles, P.W., Blakeley, R.L. and Zerner, B. 1983. Reassessment of Ellmanns reagent. Meth. Enzymol. 91: 49–60.

    Article  CAS  Google Scholar 

  27. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  28. Allan, M.H. and Vestal, M.L. 1992. Design and performance of a novel electrospray interface. J. Am. Soc. Mass. Spectrom. 13: 18–26.

    Article  Google Scholar 

  29. Mandrup, S., Højrup, P., Kristiansen, K. and Knudsen, J. 1991. Gene synthesis, expression in Escerichia coli, purification and characterization of the recombinant bovine acyl-CoA-binding protein. Biochem J. 276: 817–823.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Søgaard, M., Andersen, J., Roepstorff, P. et al. Electrospray Mass Spectrometry Characterization of Post-Translational Modifications of Barley α-Amylase 1 Produced in Yeast. Nat Biotechnol 11, 1162–1165 (1993). https://doi.org/10.1038/nbt1093-1162

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1093-1162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing