Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Use of Peptide Libraries to Map the Substrate Specificity of a Peptide-Modifying Enzyme: A 13 Residue Consensus Peptide Specifies Biotinylation in Escherichia coli

Abstract

I describe a technique for screening peptide libraries of over 109 independent clones for substrates of peptide-modifying enzymes. The peptides, linked to their genetic material by the lac repressor, are exposed to the enzyme and then screened by affinity purification on a receptor specific for the modified product. The enzyme characterized, E. coli biotin holoenzyme synthetase, normally adds biotin to a specific lysine residue in complex protein domains. The 13 residue substrate identified by this library screening approach is much smaller than the 75 amino acid required sequence of the natural substrate, and can function at either end of a fusion protein. The sequence is quite distinct at some positions from that region of the natural substrates, presumably because the peptides have to mimic the folded structure formed by the natural substrate. This technique should be useful for mapping the substrate specificity of a variety of peptide-modifying enzymes. In addition, small peptide substrates that are enzymatically biotinylated at a single site should be useful for a variety of purposes in labeling, purification, detection, and immobilization of proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cwirla, S.E., Peters, E.A., Barrett, R.W. and Dower, W.J. 1990. Peptides on phage: a vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. USA 87: 6378–6382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Devlin, J.J., Panganiban, L.C. and Devlin, P.E. 1990. Random peptide libraries: a source of specific protein binding molecules. Science 249: 404–406.

    Article  CAS  PubMed  Google Scholar 

  3. Scott, J.K. and Smith, G.P. 1990. Searching for peptide ligands with an epitope library. Science 249: 386–390.

    Article  CAS  PubMed  Google Scholar 

  4. Marks, J.D., Hoogenboom, H.R., Griffiths, A.D. and Winter, G. 1992. Molecular evolution of proteins on filamentous phage. J. Biol. Chem. 267: 16007–16010.

    CAS  PubMed  Google Scholar 

  5. Brown, S. 1992. Engineered iron oxide-adhesion mutants of the Escherichia coli phage lambda receptor. Proc. Natl. Acad. Sci. USA 89: 8651–8655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cull, M.G., Miller, J.F. and Schatz, P.J. 1992. Screening for receptor ligands using large libraries of peptides linked to the C terminus of the lac represser. Proc. Natl. Acad. Sci. USA 89: 1865–1869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matthews, D.J. and Wells, J.A. 1993. Substrate phage: selection of protease substrates by monovalent phage display. Science 260: 1113–1117.

    Article  CAS  PubMed  Google Scholar 

  8. Methods in Enzymology, vol. 184: Avidin-Biotin Technology. 1990. Wilchek, M. and Bayer, E. A. (Eds.). Academic Press. San Diego.

  9. Bayer, E.A. and Wilchek, M. 1990. Protein biotinylation. Methods Enzymol. 184: 138–160.

    Article  CAS  PubMed  Google Scholar 

  10. Samols, D., Thornton, C.G., Murtif, V.L., Kumar, G.K., Haase, F.C. and Wood, H.G. 1988. Evolutionary conservation among biotin enzymes. J. Biol. Chem. 263: 6461–6464.

    CAS  PubMed  Google Scholar 

  11. Chandler, C.S. and Ballard, F.J. 1988. Regulation of the breakdown rates of biotin-containing proteins in Swiss 3T3-L1 cells. Biochem. J. 251: 749–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fall, R.R. 1979. Analysis of microbial biotin proteins. Methods Enzymol. 62: 390–398.

    Article  CAS  PubMed  Google Scholar 

  13. Robinson, B.H., Oei, J., Saunders, M. and Gravel, R. 1983. 3H-Biotin-labeled proteins in cultured human skin fibroblasts from patients with pyruvate car-boxylase deficiency. J. Biol. Chem. 258: 6660–6664.

    CAS  PubMed  Google Scholar 

  14. Murtif, V.L. and Samols, D. 1987. Mutagenesis affecting the carboxyl terminus of the biotinyl subunit of transcarboxylase. J. Biol. Chem. 262: 11813–11816.

    CAS  PubMed  Google Scholar 

  15. Reed, K.E. and Cronan, J.E., Jr. 1991. Escherichia coli exports previously folded and biotinated protein domains. J. Biol. Chem. 266: 11425–11428.

    CAS  PubMed  Google Scholar 

  16. Shenoy, B.C., Paranjape, S., Murtif, V.L., Kumar, G.K., Samols, D. and Wood, H.G. 1988. Effect of mutations at Met-88 and Met-90 on the biotination of Lys-89 of the apo 1.3S subunit of transcarboxylase. FASEB J. 2: 2505–2511.

    Article  CAS  PubMed  Google Scholar 

  17. Cronan, J.E., Jr. 1990. Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J. Biol. Chem. 265: 10327–10333.

    CAS  PubMed  Google Scholar 

  18. Yamano, N., Kawata, Y., Kojima, H., Yoda, K. and Yamasaki, M. 1992. In vivo biotinylation effusion proteins expressed in Escherichia coli with a sequence of Propionibacterium/reudenreichii transcarboxylase 1.3S biotin subunit. Biosci. Biotech. Biochem. 56: 1017–1026.

    Article  CAS  Google Scholar 

  19. Barker, D.F. and Campbell, A.M. 1981 Genetic and biochemical characterization of the birA gene and its product: evidence for a direct role of biotin holoenzyme synthetase in repression of the biotin operon in Escherichia coli. J. Mol. Biol. 146: 469–492.

    Article  CAS  PubMed  Google Scholar 

  20. Barker, D.F. and Campbell, A.M. 1981. The bir A gene of Escherichia coli encodes a biotin holoenzyme synthetase. J. Mol. Biol. 146: 451–467.

    Article  CAS  PubMed  Google Scholar 

  21. Wilson, K.P., Shewchuk, L.M., Brennan, R.G., Otsuka, A.J. and Matthews, B.W. 1992. Escherichia coli biotin holoenzyme synthetase/bio represser crystal structure delineates the biotin- and DNA-binding domains. Proc. Natl. Acad. Sci. USA 89: 9257–9261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Howard, P.K., Shaw, J. and Otsuka, A.J. 1985. Nucleotide sequence of the birA gene encoding the biotin represser and biotin holoenzyme synthetase functions of Escherichia coli. Gene 35: 321–331.

    Article  CAS  PubMed  Google Scholar 

  23. Cronan, J.E., Jr, 1989. The E. coli bio operon: transcriptional repression by an essential protein modification enzyme. Cell 58: 427–429.

    Article  CAS  PubMed  Google Scholar 

  24. Lam, K.S., Salmon, S.E., Hersh, E.M., Hruby, V.L., Kazmierski, W.M. and Knapp, R.J. 1991. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354: 82–84.

    Article  CAS  PubMed  Google Scholar 

  25. Green, N.M. 1990. Avidin and streptavidin. Methods Enzymol. 184: 51–67.

    Article  CAS  PubMed  Google Scholar 

  26. Shenoy, B.C., Xie, Y., Park, V.L., Kumar, G.K., Beegen, H., Wood, H.G. and Samols, D. 1992. The importance of methionine residues for the catalysis of the biotin enzyme, transcarboxylase. J. Biol. Chem. 267: 18407–18412.

    CAS  PubMed  Google Scholar 

  27. Kondo, H., Uno, S., Komizo, Y. and Sunamoto, J. 1984. Importance of methionine residues in the enzymatic carboxylation of biotin-containing peptides representing the local biotinyl site of E. coli acetyl-CoA carboxylase. Int. J. Peptide Protein Res. 23: 559–564.

    Article  CAS  Google Scholar 

  28. McAllister, H.C. and Coon, M.J. 1966. Further studies on the properties of liver propionyl coenzyme A holocarboxylase synthetase and the specificity of holocarboxylase formation. J. Biol. Chem. 241: 2855–2861.

    CAS  PubMed  Google Scholar 

  29. Eisenberg, M.A., Prakash, O. and Hsiung, S.-C. 1982. Purification and properties of the biotin represser. J. Biol. Chem. 257: 15167–15173.

    CAS  PubMed  Google Scholar 

  30. Buoncristiani, M.R. and Otsuka, A.J. 1988. Overproduction and rapid purification of the biotin operon represser from Escherichia coli. J. Biol. Chem. 263: 1013–1016.

    CAS  PubMed  Google Scholar 

  31. Dower, W.J., Miller, J.F. and Ragsdale, C.W. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16: 6127–6145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maina, C.V., Riggs, P.D., Grandea, A.G.I., Slatko, B.E., Moran, L.S., Tagliamonte, J.A., McReynolds, L.A. and Guan, C. 1988. A vector to express and purify foreign proteins in Escherichia coli by fusion to, and separation from, maltose binding protein. Gene 74: 365–373.

    Article  CAS  PubMed  Google Scholar 

  33. Davis, R.W., Botstein, D. and Roth, J.R. 1980. Advanced Bacterial Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  34. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schatz, P. Use of Peptide Libraries to Map the Substrate Specificity of a Peptide-Modifying Enzyme: A 13 Residue Consensus Peptide Specifies Biotinylation in Escherichia coli. Nat Biotechnol 11, 1138–1143 (1993). https://doi.org/10.1038/nbt1093-1138

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1093-1138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing