Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Characterization of RNA–Mediated Resistance to Tomato Spotted Wilt Virus in Transgenic Tobacco Plants

Abstract

Recently high levels of protection against tomato spotted wilt virus (TSWV), a negative–strand RNA virus infecting plants, have been obtained by transforming tobacco with viral nucleoprotein (N) gene sequences. Here we demonstrate that this protection is primarily due to the presence of N gene transcripts in the cells of transgenic plants, and hence appears to be RNA–mediated. Further, transgenic tobacco plants are only protected to isolates and strains of TSWV and not to other tospoviruses that share considerable nucleotide sequence homology in their N genes to TSWV. In addition to being protected after mechanical inoculation, the transgenic tobacco plants are also resistant to inoculation using viruliferous thrips, i.e. Frankliniella occidentalis (Perg.), one of the most important natural vector species.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Peters, D., Avila, A.C.de, Kitajima, E.W., Resende, R. de O., De Haayn, P. and Goldbach, R. 1991. An overview of tomato spotted wilt virus, 1–14. In: Virus-Thrips-Plant Interactions of TSWV, Proc. USDA Workshop, Belltsville U.S.A., H.-T. Hsu and R. H. Lawson (Eds.). Nat. Techn. Inf. Serv., Springfield, VA.

    Google Scholar 

  2. De Haan, P. 1992. Tospoviruses. In: Encyclopedia of Virology. R. G. Webster and A. Granoff (Eds.). Saunders Scientific Publications, London.

    Google Scholar 

  3. De Haan, P., Wagemakers, L., Peters, D. and Goldbach, R. 1990. The S RNA segment of tomato spotted wilt virus has an ambisense character. J. Gen. Virol. 71: 1001–1007.

    CAS  Article  PubMed  Google Scholar 

  4. Elliott, R.M. 1990. Molecular biology of the Bunyaviridae. J. Gen. Virol. 71: 501–522.

    CAS  Article  PubMed  Google Scholar 

  5. Francki, R.I.B., Fauquet, C.M., Knudson, D.D. and Brown, F. 1991. Fifth report of the International Committee on Taxonomy of Viruses. Arch. Virol. Suppl. 2: 1–450.

    Google Scholar 

  6. Kameyi-Iwaki, M., Hanada, K., Honda, Y. and Tochihara, H. 1988. A watermelon strain of tomato spotted wilt virus (TSWV-W) and some properties of its nucleocapsid (Abstract). Fifth Int. Congress of Plant Pathol. Japan.

    Google Scholar 

  7. Avila, A.C. de, Huguenot, C., Resende, R. de O., Kitajima, E.W., Goldbach, R.W. and Peters, D. 1990. Serological differentation of 20 isolates of tomato spotted wilt virus. J. Gen. Virol. 71: 2801–2807.

    Article  PubMed  Google Scholar 

  8. Law, M.D. and Moyer, J.W. 1990. A tomato spotted wilt-like virus with a serologically distinct N protein. J. Gen. Virol. 71: 933–938.

    CAS  Article  Google Scholar 

  9. Sreenivasulu, P., Demski, J.W., Reddi, D.V.R., Naidu, R.A. and Ratna, A.S. 1991. Purification and some serological relationships of tomato spotted wilt virus isolates occurring on peanut (Arachis hypogaea) in the USA. Plant Pathol. 40: 503–507.

    Article  Google Scholar 

  10. Avila, A.C. de, De Haan, P., Smeets, M.L.L., Resende, R. de O., Kormelink, R., Kitajima, E.W., Goldbach, R. and Peters, D. 1992. Distinct levels of relationships between tospovirus isolates. Arch. of Virol. In press.

  11. Avila, A.C. de, De Haan, P., Kitajima, E.W., Kormelink, R., Resende, R. de O., Goldbach, R. and Peters, D. 1992. Characterization of a distinct tomato spotted wilt virus (TSWV) isolate from Impatiens sp. in the Netherlands. J. Phytopathol. 134: 133–151.

    Article  Google Scholar 

  12. Sakimura, K. 1962. The present status of thrips-borne viruses, 37–40. In: Biological Transmission of Disease Agents. K. Maramorosch (Ed.). Academic Press, NY.

    Google Scholar 

  13. Paliwal, Y.C. 1974. Some properties and thrips transmission of tomato spotted wilt virus in Canada. Can. J. Bot. 52: 1177–1182.

    Article  Google Scholar 

  14. Ie, T.S. 1964. An electron microscope study of tomato spotted wilt virus in the plant cell. Neth. J. Plant Pathol. 70: 114–115.

    Article  Google Scholar 

  15. Kitajima, E.W. 1965. Electron microscopy of vira-cabeca virus (Brazilian tomato spotted wilt virus) within the host cell. Virology 26: 89–99.

    CAS  Article  PubMed  Google Scholar 

  16. Milne, R.G. 1970. An electron microscope study of tomato spotted wilt virus in sections of infected cells and in negative stain preparations. J. Gen. Virol. 6: 267–276.

    Article  Google Scholar 

  17. De Haan, P., Wagemakers, L., Goldbach, R. and Peters, D. 1989. Tomato spotted wilt virus, a new member of the Bunyaviridae?, 287–290. In: Genetics and Pathogenicity of Negative-Strand Viruses. D. Kolakofski and B. W. J. Mahy (Eds.). Elsevier Science Publishers B.V., Amsterdam.

    Google Scholar 

  18. Kormelink, R., Kitajima, E.W., De Haan, P., Zuidema, D., Peters, D. and Goldbach, R. 1991. The non-structural protein (NSs) encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology 181: 459–468.

    CAS  Article  PubMed  Google Scholar 

  19. De Haan, P., Kormelink, R., Resende, R. de O., Van Poelwijk, F., Peters, D. and Goldbach, R. 1991. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J. Gen. Virol. 72: 2207–2216.

    CAS  Article  PubMed  Google Scholar 

  20. Gielen, J.J.L., De Haan, P., Kool, A.J., Peters, D., Van Grinsven, M.Q.J.M. and Goldbach, R. 1991. Engineered resistance to tomato spotted wilt virus, a negative-strand RNA virus. Bio/Technology 9: 1363–1367.

    CAS  Article  Google Scholar 

  21. MacKenzie, D.J. and Ellis, P.J. 1992. Resistance to tomato spotted wilt virus infection in transgenic tobacco expressing the viral nucleocapsid gene. Mol. Plant-Microbe Int. 5: 34–40.

    CAS  Article  Google Scholar 

  22. Beaton, A.R. and Krug, R.M. 1986. Transcription antitermination during influenza virus template RNA synthesis requires the nucleocapsid protein and the absence of a 5′ capped end. Proc. Natl. Acad. Sci. USA. 83: 6282–6286.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Franze-Fernandez, M.T., Zetina, C., Iapalucci, S., Lucero, M.A., Bouissou, C., Lopez, R., Rey, O., Daheli, M., Cohen, G.N. and Zakin, M.M. 1987. Molecular structure and early events in the replication of Tacaribe arenavirus S RNA. Virus Res. 7: 309–324.

    CAS  Article  PubMed  Google Scholar 

  24. Vidal, S. and Kolakofski, D. 1989. Modified model for the switch from Sendai virus transcription to replication. J. Virol. 63: 1951–1958.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hemenway, C., Haley, L., Kaniewski, W.K., Lawson, E.C., O'Connell, K.M., Sanders, P.R., Thomas, P.E. and Tumer, N.E. 1990. Genetically engineered resistance: transgenic plants, 347–362. In: Plant Viruses, Vol. 2 (Pathology). C. L. Mandahar (Ed.). CRC Press, Boca Raton, FL.

    Google Scholar 

  26. Cuozzo, M., O'Connell, K.M., Kaniewski, W., Fang, R.-X., Chua, N.-H. and Tumer, N.E. 1988. Viral protection in transgenic tobacco plants expressing the cucumber mosaic coat protein or its antisense RNA. Bio/Technology 6: 549–557.

    CAS  Google Scholar 

  27. Kawchuk, L.M., Martin, R.R. and McPherson, J. 1991. Sense and antisense RNA-mediated resistance to potato leafroll virus in Russet Burbank potato plants. Mol. Plant-Microbe Int. 4: 247–253.

    CAS  Article  Google Scholar 

  28. Benfey, P.N., Ren, L. and Chua, N.-H. 1989. Tissue-specic expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J. 9: 1677–1684.

    Article  Google Scholar 

  29. Benfey, P.N., Ren, L. and Chua, N.-H. 1989. Combinatorial and synergistic properties of CaMV 35S subdomains. EMBO J. 9: 1685–1696.

    Article  Google Scholar 

  30. Beachy, R.N., Loesch-Fries, S. and Tumer, N.E. 1990. Coat protein-mediated resistance against infection. Ann. Rev. Phytopathol. 28: 45–1474.

    Article  Google Scholar 

  31. Hemenway, C., Fang, R.X., Kaniewski, W.K., Chua, N.-H. and Tumer, N.E. 1988. Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. EMBO J. 7: 1273–1280.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Lindbo, J.A. and Dougherty, W.G. 1992. Pathogen-derived resistance to a potyvirus: Immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol. Plant-Microbe Int. 5: 144–153.

    CAS  Article  Google Scholar 

  33. Van der Vlugt, R.A.A., Ruiter, R.K. and Goldbach, R. 1992. Evidence for sense RNA-mediated protection to PVYn in tobacco plants transformed with the viral coat protein cistron. Plant Mol. Biol. In press.

  34. Bevan, M. 1984. Agrobacterium vectors for plant transformation. Nucl. Acids Res. 12: 8711–8721.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J. and Schilperoort, R.A. 1983. A binary vector system based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180.

    CAS  Article  Google Scholar 

  36. Ditta, G., Stanfield, S., Corbin, D. and Helinski, D.R. 1980. Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA. 80: 7347–7351.

    Article  Google Scholar 

  37. Horsch, R.B., Fry, J.E., Hoffman, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    CAS  Article  Google Scholar 

  38. Resende, R. de O., Avila, A.C. de, Goldbach, R.W. and Peters, D. 1991. Detection of tomato spotted wilt virus using polyclonal antisera in double antibody sandwich (DAS) ELISA and cocktail ELISA. J. Phytopathol. 132: 46–56.

    CAS  Article  Google Scholar 

  39. Verwoerd, T.C., Dekker, B.M.M. and Hoekema, A. 1989. A small scale procedure for the rapid isolation of plant RNAs. Nucl. Acids Res. 17: 2362.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Ausubel, F. A., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (Eds.). 1990. Current Protocols in Molecular Biology. Green Publishing and Wiley-Interscience, NY.

  41. Tashiro, H. 1967. Self-watering acrylic cages for confining insects and mites on detached leaves. J. Econ. Entom. 60: 354–356.

    Article  Google Scholar 

  42. Allen, W.R. and Matteoni, D.A. 1991. Petunia as an indicator plant for use by growers to monitor for thrips carrying the tomato spotted wilt virus in greenhouses. Plant Dis. 75: 78–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haan, P., Gielen, J., Prins, M. et al. Characterization of RNA–Mediated Resistance to Tomato Spotted Wilt Virus in Transgenic Tobacco Plants. Nat Biotechnol 10, 1133–1137 (1992). https://doi.org/10.1038/nbt1092-1133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1092-1133

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing