Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial Conversions of Low Rank Coals

Abstract

Coal is the United States' most abundant nonrenewable energy resource. However, the quality of many coals is too low to offset the practical, economic, and regulatory barriers to their utilization. A variety of bacterial and fungal species have been shown to attack low rank (i.e., low–quality) coals. Technologies based on these microbial activities may be useful for the conversion of these coals to more useful products, including high–quality fuels and chemicals. Substantial developmental work will be required in order for these microbial processes to become competitive with nonbiological processes. This review summarizes the microbiological and biochemical principles underlying microbial coal conversion as a basis for predicting the practical utility of coal bio–processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Energy Information Administration. 1990. Monthly Energy Review, June 1991, U.S. Dept. of Energy Report No. DOE/EIA-0035(91/06), Washington.

  2. Hagan, C.W., Jr. 1989. Energy Technology R&D: What Could Make a Difference? Oak Ridge Nat. Lab. Report No. 6541/v1, Oak Ridge, TN

    Google Scholar 

  3. Meyers, R.A. (Ed.) 1981. Coal Handbook, Marcel Dekker, Inc., New York.

  4. Berkowitz, N., 1985. Chemistry of Coal, Elsevier, Amsterdam.

    Google Scholar 

  5. Hessley, R.K., Reasoner, J.W. and Riley, J.T. 1986 Coal Science: An Introduction to Chemistry, Technology, and Utilization, John Wiley & Sons, New York.

    Google Scholar 

  6. Couch, G.R. 1987. Biotechnology and coal. IEA Coal Res. Rep. ICTIS/TR38, (56 pp.).

    Google Scholar 

  7. Shepard, M. 1987. Bugs and coal: processing fuels with biotechnology. EPRI J. 12: 28–35.

    Google Scholar 

  8. Srivastava, R.D., Campbell, I.M. and Blaustein, B.D. 1989. Coal bioprocessing: a research-needs assessment. Chem. Eng. Prog. 85: 45–53.

    CAS  Google Scholar 

  9. Faison, B.D. 1991 The chemistry of low rank coals and its relation ship to the biochemical mechanisms of coal biotransformation. In: Microbial Transformations of Low Rank Coals, Crawford, D. L. (Ed.). CRC Press, Inc., Boca Raton. In press

    Google Scholar 

  10. Schobert, H.H. 1990. Structural features of low-rank coals. Resources Conserv. Recycling 3: 111–115.

    Article  Google Scholar 

  11. Rogoff, M.H., Wander, I. and Anderson, R.G. 1962. Microbiology of Coal. U.S. Dept. of Interior Bureau of Mines Information Circular No. 8075, Washington

    Google Scholar 

  12. Korburger, J.A. 1964. Microbiology of coal: growth of bacteria in plain and oxidized coal slurries. Proc. W. Virginia Acad. Sci. 36: 26–30.

    Google Scholar 

  13. Schenk, N.C. and Carter, J.C. 1954. A fungistatic substance extracted from vitrain. Science 119: 213.

    Article  Google Scholar 

  14. Kosanke, R.M. 1954. A bacteriostatic substance extracted from vitrain ingredient of coal. Science 119: 214.

    Article  CAS  Google Scholar 

  15. Olsson, G., Larsson, L., Holst, O. and Karlsson, H.T. 1989. Microorganisms for the desulphurization of coal: the influence of leaching compounds on their growth. Fuel 68: 1270–1272.

    Article  CAS  Google Scholar 

  16. Cohen, M.S. and Gabriele, P.D. 1982. Degradation of coal by the fungi Polyporus versicolor and Poria monticola. Appl. Environ. Microbiol. 44: 23–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fakoussa, R. M. and Truper, H. G. 1983. Kohle als Microbielles Substrat unter Aeroben Bedingungen [Coal as substrate for microorganisms: investigations of the microbial decomposition of untreated hard coals], p. 41–49. In: Kolloquium in der Berbbau-Forschung GmbH. Rehm, H.J. (Ed.). Steinkohlenbergbauverein, Essen, FRG.

    Google Scholar 

  18. Ward, B. and Sanders, A. 1990. Solubilization of lignites by fungi, p 3/57–68. In: Proc. Electric Power Research Institute Symp. on the Biological Processing of Coal and Coal-Derived Substances, Electric Power Research Institute, Palo Alto, CA.

    Google Scholar 

  19. Ward, B. 1985. Lignite-degrading fungi isolated from a weathered outcrop. System. Appl. Microbiol. 6: 236–238.

    Article  Google Scholar 

  20. Scott, C.D., Strandberg, G.W. and Lewis, S.N. 1986.Microbial solubilization of coal. Biotechnol. Prog. 2: 131–139.

    Article  CAS  Google Scholar 

  21. Gupta, R.K., Spiker, J.K. and Crawford, D.L. 1988. Biotransformation of coal by ligninolytic Streptomyces. Can. J. Microbiol. 34: 667–674.

    Article  CAS  Google Scholar 

  22. Strandberg, G.W. and Lewis, S.N. 1987. Solubilization of coal by an extracellular product from Streptomyces setonii75Vi2. J. Indus. Microbiol. 1: 371–375.

    Article  CAS  Google Scholar 

  23. Quigley, D.R., Ward, B., Crawford, D.L., Hatcher, H.J. and Dugan, P.R. 1989. Evidence that microbially produced alkaline materials are involved in coal biosolubilization. Appl. Biochem. Biotechnol. 20/21: 753–764.

    Article  Google Scholar 

  24. Runnion, K. and Combie, J.D. 1990. Thermophilic microorganisms for coal biosolubilization. Appl. Biochem. Biotechnol. 24/25: 817–829.

    Article  Google Scholar 

  25. Ward, B., Quigley, D.R. and Dugan, P.R. 1988. Relationships between natural weathering and lignite biosolubility or alkali solubility, p. 40–46. In: Proc. Institute for Gas Technology Conference on Coal, Institute for Gas Technology, Chicago, IL.

    Google Scholar 

  26. Strandberg, G.W. and Lewis, S.N. 1987. A method to enhance the microbial liquefaction of lignite coals. Biotechnol. Bioeng. Symp. 17: 153–158.

    Google Scholar 

  27. Stewart, D.L., Thomas, B.L., Bean, R.M. and Fredrickson, J.K. 1990. Colonization and degradation of oxidized bituminous coal by Penicillium sp. J. Indus. Microbiol. 6: 53–58.

    Article  CAS  Google Scholar 

  28. Maka, A., Srivastava, V.J., Kilbane, J.J., II and Akin, C. 1989. Biological solubilization of untreated North Dakota lignite by a mixed bacterial and a mixed bacterial/fungal culture. Appl. Biochem. Biotechnol. 20/21: 715–730.

    Article  Google Scholar 

  29. Quigley, D.R., Wey, J.E., Breckenridge, C.R., Stoner, D.L. and Dugan, P.R. 1987. Comparison of products obtained by alkali and microbial solubilization of coal, p. 315–323. In: Processing and Utilization of High Sulfur Coals II, Chugh, Y. P. and Caudle, R. D.(Eds.). Elsevier Science Publishing Co., New York.

    Google Scholar 

  30. Cohen, M.S., Bowers, W.C., Aronson, H. and Gray, E.T., Jr. 1987. Cell-free solubilization of coal by Polyporus versicolor. Appl. Environ. Microbiol. 53: 2840–2843.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Strandberg, G.W. and Lewis, S.N. 1988. Factors affecting coal solubilization by the bacterium Streptomyces setonii 75Vi2 and by alkaline buffers. Appl. Biochem. Biotechnol. 18: 355–362.

    Article  CAS  Google Scholar 

  32. Quigley, D.R., Breckenridge, C.R. and Dugan, P.R. 1989. Effects of multivalent cations on low-rank coal solubilities in alkaline solutions and microbial cultures. Energy Fuels 3: 571–574.

    Article  CAS  Google Scholar 

  33. Do Nascimento, H.C.G., Lee, K.I., Chou, S.-Y., Wang, W.-C., Chen, J.R. and Yen, T.F. 1987. Growth of Polyporus versicoloron lignite fractions. Process Biochem. 22: 24.

    CAS  Google Scholar 

  34. Quigley, C.R., Wey, J.E., Breckenridge, C.R. and Stoner, D.L. 1988. The influence of pH on biological solubilization of oxidized, low-rank coal. Resources Conserv. Recycling 1: 163–172.

    Article  CAS  Google Scholar 

  35. Fakoussa, R.M. 1989. Comparison of the mechanisms of lignite and hard coal degradation by microorganisms, p. 330–348. In: Proc. Bioprocessing of Fossil Fuels Workshop, U.S. Dept of Energy, Washington.

    Google Scholar 

  36. Faison, B.D. and Lewis, S.N. 1989. Production of coal-solubilizing activity by Paecilomyces sp. during submerged growth in defined liquid media. Appl. Biochem. Biotechnol. 20/21: 743–752.

    Article  Google Scholar 

  37. Cohen, M.S., Feldman, K.A., Brown, C.S. and Gray, E.T., Jr. 1990. Isolation and identification of the coal-solubilizing agent produced by Trametes versicolor. Appl. Environ. Microbiol. 56: 3285–3294.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Faison, B.D., Woodward, C.A. and Bean, R.M. 1990. Microbial solubilization of a preoxidized subbituminous coal: product characterization. Appl. Biochem. Biotechnol. 24/25: 831–836.

    Article  Google Scholar 

  39. Linehan, J.C. 1991. Characterization of the coal biosolubilization process using gel permeation chromatography and CPMAS NMR, p. 1/73–86. In: Proc. 1st Int. Symp. on the Biological Processing of Coal, Electric Power Research Institute, Palo Alto, CA. In press.

    Google Scholar 

  40. Pyne, J.W., Jr., Stewart, D.L., Fredrickson, J. and Wilson, B.W. 1987. Solubilization of leonardite by an extracellular fraction from Coriolus versicolor. Appl. Environ. Microbiol. 53: 2844–2848.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Moolick, R.T., Karim, M.N., Linden, J.C. and Burback, B.L. 1889. Lignite solubilizauon by cell-broths of Penicillium cultures. Presented at the llth Symp. on Biote technology for Fuels and Chemicals, Colorado Springs, CO.

    Google Scholar 

  42. Scott, C.D. and Lewis, S.N. 1988. Biological solubilization of coal using both in vivo and in vitro processes. Appl. Biochem. Biotechnol. 18: 403–409.

    Article  CAS  Google Scholar 

  43. Scott, C.D., Woodward, C.A., Thompson, J.E. and Blankinship, S.L. 1990. Coal solubilization by enhanced enzyme activity in organic solvents. Appl. Biochem. Biotechnol. 24/25: 799–815.

    Article  Google Scholar 

  44. Crawford, D.L., Gupta, R.K., Deobald, L.A. and Roberts, D.J. 1990. Biotransformations of coal and coal substructure model compounds by bacteria under aerobic and anaerobic conditions, p. 4/27–44. In: Proc. 1st Int. Symp. on the Biological Processing of Coal, Electric Power Research Institute, Palo Alto, CA.

    Google Scholar 

  45. Crawford, D.L. 1991. Extracellular enzymes produced by a coal depolymerizing bacterium under induced and uninduced growth conditions. Presented at the 2nd Int. Symp. on the Biological Processing of Coal, San Diego, CA

    Google Scholar 

  46. Wondrack, L., Szanto, M. and Wood, W.A. 1989. Depolymerization of water soluble coal polymer from subbituminous coal and lignite by lignin peroxidase. Appl. Biochem. Biotechnol. 20/21: 765–780.

    Article  Google Scholar 

  47. Gupta, R.K., Deobald, L.A. and Crawford, D.L. 1990. Depolymerization of lignite coal by Pseudomonas strain 07. Appl. Biochem. Bio technol. 24/25: 899–907.

    Article  Google Scholar 

  48. Campbell, J.A., Stewart, D.L., McCulloch, M., Lucke, R.B. and Bean, R.M. 1990. Biodegradation of coal-related model compounds. Amer. Chem. Soc. Div. Fuel Chem. 33: 514–518.

    Google Scholar 

  49. Davison, B.H., Nicklaus, D.M., Misra, A., Lewis, S.N. and Faison, B.D. 1990. Utilization of microbially solubilized coal: Preliminary studies on aerobic conversion. Appl. Biochem. Biotechnol. 24/25: 447–456.

    Article  Google Scholar 

  50. Ackerson, M.D., Johnson, N.L., Ile, M., Clausen, E.C. and Gaddy, J.L. 1990. Biosolubilization and liquid fuel production from coal. Appl. Biochem. Biotechnol. 24/25: 913–922.

    Article  Google Scholar 

  51. Borgmeyer, J.R. and Crawford, D.L. 1985. Production and characterization of polymeric lignin degradation intermediates from two different Streptomyces species. Appl. Environ. Microbiol. 49: 273–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Crawford, D.L., Pometto, A.L., III and Crawford, R.L. 1985. Production of useful modified lignin polymers by bioconversion of lignocellulose with Streptomyces. Biotechnol. Adv. 2: 217–232.

    Article  Google Scholar 

  53. Crawford, D.L., Pettey, T.M., Thede, B.M. and Deobald, L.A. 1984. Genetic manipulation of ligninolytic Streptomyces and generation of improved lignin-to-chemical bioconversion strains. Biotechnol. Bio eng. Symp. 14: 241–256.

    CAS  Google Scholar 

  54. Barik, S., Wyza, R. and Isbister, J.D. 1990. Biological conversions of low-rank coals, p. 5/19–32. In: Proc. Electric Power Research Institute Symp. on the Biological Processing of Coal and Coal-Derived Sub stances. Electric Power Research Institute, Palo Alto, CA.

    Google Scholar 

  55. Andrews, G. 1991. Mass and energy balance constraints on the biological production of chemicals from coal. Fuel 70: 569–575.

    Article  Google Scholar 

  56. Jain, M.K. 1991. Biodecarboxylation of subbituminous coal under anaerobic conditions. Presented at the 2nd Int. Symp. on the Biological Processing of Coal, San Diego, CA.

    Google Scholar 

  57. Aleem, M.I.A. 1991 Bioprocessing of coal: microbial hydrogenation of coal and effect of liquefaction. Presented at the 2nd Int. Symp. on the Biological Processing of Coal, San Diego, CA.

    Google Scholar 

  58. Faison, B.D., Clark, T.M., Lewis, S.N., Ma, C.Y., Sharkey, D.M. and Woodward, C.A. 1991 Degradation of organic sulfur compounds by a coal solubilizing fungus. Appl. Biochem. Biotechnol. 28/29: 237–251.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faison, B. Microbial Conversions of Low Rank Coals. Nat Biotechnol 9, 951–956 (1991). https://doi.org/10.1038/nbt1091-951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1091-951

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing