Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microfabricated arrays of femtoliter chambers allow single molecule enzymology

Abstract

Precise understanding of biological functions requires tools comparable in size to the basic components of life1,2,3,4. Single molecule studies have revealed molecular behaviors usually hidden in the ensemble- and time-averaging of bulk experiments5,6. Although most such approaches rely on sophisticated optical strategies to limit the detection volume7,8, another attractive approach is to perform the assay inside very small containers9,10,11,12,13,14,15,16. We have developed a silicone device presenting a large array of micrometer-sized cavities. We used it to tightly enclose volumes of solution, as low as femtoliters, over long periods of time. The microchip insures that the chambers are uniform and precisely positioned. We demonstrated the feasibility of our approach by measuring the activity of single molecules of β-galactosidase and horseradish peroxidase. The approach should be of interest for many ultrasensitive bioassays at the single-molecule level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microfabrication of the PDMS chambers.
Figure 2: Water enclosure in the microchambers, and evaluation of the sealing.
Figure 3: Detection of the activity of single β-galactosidase molecules.

Similar content being viewed by others

References

  1. Whitesides, G.M. The “right” size in nanobiotechnology. Nat. Biotechnol. 21, 1161–1165 (2003).

    Article  CAS  Google Scholar 

  2. Jensen, K. Smaller, faster chemistry. Nature 393, 735–736 (1998).

    Article  CAS  Google Scholar 

  3. Wölcke, J. & Ullmann, D. Miniaturized HTS technologies – uHTS. Drug Discov. Today 6, 637–646 (2001).

    Article  Google Scholar 

  4. Thorsen, T., Maerkl, S.J. & Quake, S.R. Microfluidic large scale interaction. Science 298, 580–584 (2002).

    Article  CAS  Google Scholar 

  5. Lu, H.P., Xun, L. & Xie, S. Single molecule enzymatic dynamics. Science 282, 1877–1882 (1998).

    Article  CAS  Google Scholar 

  6. Xue, Q. & Yeung, E. Differences in the chemical reactivity of individual molecules of an enzyme. Nature 373, 681–683 (1995).

    Article  CAS  Google Scholar 

  7. Funatsu, T. et al. Imaging of single molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).

    Article  CAS  Google Scholar 

  8. Levene, M.J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

    Article  CAS  Google Scholar 

  9. Lipman, A.E., Shuler, B., Bakajin, O. & Eaton, W.A. Single molecule measurement of protein folding kinetics. Science 301, 1233–1235 (2003).

    Article  CAS  Google Scholar 

  10. Foquet, M., Korlach, J., Zipfel, W.R., Webb, W.W. & Craighead, H.G. Focal volume confinement by submicrometer-sized fluidic channels. Anal. Chem. 76, 1618–1626 (2004).

    Article  CAS  Google Scholar 

  11. Gratzl, M., Lu, H., Matsimoto, T., Yi, C. & Bright, G.R. Fine chemical manipulations of microscopic liquid samples. 1. Droplet loading with chemicals. Anal. Chem. 71, 2751–2756 (1999).

    Article  CAS  Google Scholar 

  12. Stamou, S., Duschl, C., Delamarche, E. & Vogel, H. Self assembled microarrays of attoliter molecular vessels. Angew. Chem. Int. Ed. 42, 5580–5583 (2003).

    Article  CAS  Google Scholar 

  13. Nagai, H., Murakami, Y., Yokoyama, K. & Tamiya, E. High-throughput PCR in silicon based microchamber array. Biosens. Bioelectron. 16, 1015–1019 (2001).

    Article  CAS  Google Scholar 

  14. Chiu, D.T. et al. Chemical transformations in individual ultrasmall biomimetic containers. Science 283, 1892–1895 (1999).

    Article  CAS  Google Scholar 

  15. Gosalia, D.N. & Diamond, S.L. Printing chemical library on microarrays for fluid phase nanoliter reactions. Proc. Nat. Acad. Sci. USA 100, 8721–8726 (2003).

    Article  CAS  Google Scholar 

  16. Nakano, M. et al. Single molecule PCR using water in oil emulsion. J. Biotechnol. 102, 117–124 (2003).

    Article  CAS  Google Scholar 

  17. Loscertales, I.G. et al. Micro/nano encapsulation via electrified coaxial liquid jets. Science 295, 1695–1698 (2002).

    Article  CAS  Google Scholar 

  18. Renault, J.P. et al. Fabricating arrays of single protein molecules on glass using microcontact printing. J. Phys. Chem. 107, 703–711 (2003).

    Article  CAS  Google Scholar 

  19. McDonald, J.C. & Whitesides, G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts Chem. Res. 35, 491–499 (2002).

    Article  CAS  Google Scholar 

  20. Baltussen, E., Sandra, P., David, F., Janseen, H.G. & Cramers, C. Study of the equilibrium mechanism between water and PDMS for very apolar solutes: adsorption or sorption? Anal. Chem. 71, 5213–5216 (1999).

    Article  CAS  Google Scholar 

  21. Du Plessis, J., Pugh, J., Judefeind, A. & Hadgraft, J. The effect of the nature of H-bonding groups on diffusion through PDMS membranes saturated with octanol and toluene. Eur. J. Pharm. Sci. 15, 62–69 (2002).

    Article  Google Scholar 

  22. Rondelez, Y. et al. Femtoliters chambers for the study of mechanically-driven ATP synthesis by F1 protein motor. in Proceedings of the 7th International Conference on Micro Total Analysis Systems, 555–558, Squaw Valley, CA, USA, October 5–9, 2003.

    Google Scholar 

  23. Horbett, T.A. & Bratsh, J.L. Proteins at interfaces. in Proteins at interfaces. Physicochemical and biochemical studies (eds. Brasch, J.L. & Horbett, T.A.) 1–33 (Amer. Chem. Soc., Washington, DC, 1987).

    Google Scholar 

  24. Wheeler, A.R. et al. Microfluidic device for single cell analysis. Anal. Chem. 75, 3581–3586 (2003).

    Article  CAS  Google Scholar 

  25. Sapsford, K.E. & Ligler, F.S. Realtime analysis of protein adsorption to a variety of thin films. Biosensors and Bioelectronics 19, 1045–1055 (2004).

    Article  CAS  Google Scholar 

  26. Huang, Z. Kinetic fluorescence measurement of fluorescein di-β-galactoside hydrolysis by β-Galactosidase: intermediate channelling in stepwise catalysis by a free single enzyme. Biochemistry 30, 8535–8540 (1991).

    Article  CAS  Google Scholar 

  27. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Jr. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    Article  CAS  Google Scholar 

  28. Ishijima, A. & Yanagida, T. Single molecule nanobioscience. Trends. Bio. Sci. 26, 438–444 (2001).

    Article  CAS  Google Scholar 

  29. Itoh, H. et al. Mechanically driven ATP synthesis by F1-ATPase. Nature 427, 465–468 (2004).

    Article  CAS  Google Scholar 

  30. Rondelez, Y. et al. Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433, 773–777 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was performed in the framework of the Laboratory for Integrated Micro Mechatronic Systems (LIMMS-CNRS/IIS), and financially supported by the Japan Society for the Promotion of Science (H.N., S.T. and H.F.), Bio-Oriented Technology Research Advancement Institution (H.N. and S.T.) and Mitsubishi Foundation (H.N. and S.T.). We thank all members of Noji, Takeuchi and Fujita laboratories for help and advice, and I. Baba and T. Kitamori for critical reading and R. Yasuda for programming of image analysis software. Y.R. and G.T. are Research Fellows of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Noji.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The activity of other single enzymes can be detected inside the microchambers. (PDF 501 kb)

Supplementary Fig. 2

In the assay we used, β-Gal catalyzes the hydrolysis of nonfluorescent FDG to highly fluorescent fluorescein. (PDF 282 kb)

Supplementary Video (MOV 697 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rondelez, Y., Tresset, G., Tabata, K. et al. Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nat Biotechnol 23, 361–365 (2005). https://doi.org/10.1038/nbt1072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing