Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Antisense and siRNA as agonists of Toll-like receptors

A Corrigendum to this article was published on 01 January 2005

This article has been updated

Abstract

About 25 years ago, researchers first demonstrated that a short synthetic oligodeoxynucleotide, referred to as antisense, can inhibit replication of Rous sarcoma virus through hybridization to viral RNA. Since then, several hybridization-based oligonucleotide approaches have been developed to elucidate the functions of genes and their potential as therapeutic agents. Short-interfering (si) RNA is the most recent example. To effectively inhibit gene expression, an antisense or siRNA must be resistant to nucleases, be taken up efficiently by cells, hybridize efficiently with the target mRNA and activate selective degradation of the target mRNA or block its translation without causing undesirable side effects. However, both antisense and siRNA agents have been shown to exert non-target-related biological effects including immune stimulation. Do antisense and siRNA agents work as ligands for Toll-like receptors (TLRs), a family of pathogen-associated, molecular pattern recognition receptors?

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Toll-like receptor pathways and antisense.

Change history

  • 01 January 2005

    Nat. Biotechnol. 22, 1533–1537 (2004) The title should read, “Role of Toll-like receptors in antisense and siRNA.” The last line of paragraph 3, beginning “This article summarizes present evidence....” should be deleted. In Table 1, superscript 'b' in “Sequencea,b, should be deleted, and superscript'a' after 3′ in line 3 of that column should be replaced by superscript b.

References

  1. 1

    Zamecnik, P.C. & Stephenson, M.L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA 75, 280–284 (1978).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Agrawal, S. et al. Oligodeoxynucleoside phosphoramidates and phosphorothioates as inhibitors of human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 85, 7079–7083 (1988).

    CAS  PubMed  Article  Google Scholar 

  3. 3

    Agrawal, S. & Kandimalla, E.R. Antisense therapeutics: is it as simple as complementary base recognition? Mol. Med. Today 6, 72–81 (2000).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Sereni, D. et al. Pharmacokinetics and tolerability of intravenous trecovirsen (GEM 91), an antisense phosphorothioate oligonucleotide, in HIV-positive subjects. J. Clin. Pharmacol. 39, 47–54 (1999).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Vitravene study group. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am. J. Ophthalmol. 133, 467–474 (2002).

  6. 6

    Webb, A. et al. Bcl2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 349, 1137–1141 (1997).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Cunningham, C.C. et al. A phase I trial of H-ras antisense oligonucleotide ISIS2503 administered as a continuous intravenous infusion in patients with advanced carcinoma. Cancer 92, 1265–1271 (2001).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Nemunaitis, J. et al. Phase I evaluation of ISIS3521, and antisense oligodeoxynucleotide to protein kinase C-α, in patients with advanced cancer. J. Clin. Oncol. 17, 3586–3595 (1999).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    O'Dwyer, P.J. et al. c-raf-1 depletion and tumor responses in patients treated with the c-raf-1 antisense oligodeoxynucleotide ISIS5132 (CGP69846A). Clin. Cancer Res. 5, 3977–3982 (1999).

    CAS  PubMed  Google Scholar 

  10. 10

    Bishop, M.R. et al. Phase I trial of an antisense OL(1)p53 in hematologic malignancies. J. Clin. Oncol. 14, 1320–1326 (1996).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Andrews, D.W. et al. Results of a pilot study involoving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type 1 receptor in malignant astrocytomas. J. Clin. Oncol. 19, 2189–2200 (2001).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Luger, S.M. et al. Oligodeoxynucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood 99, 1150–1158 (2002).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Lee, Y. et al. GTI-2040, an antisense agent targeting the small subunit component (R2) of human ribonucleotide reductase, shows potent antitumor activity against a variety of tumors. Cancer Res. 63, 2802–2811 (2003).

    CAS  PubMed  Google Scholar 

  14. 14

    Levine, A.M., Quinn, D.I., Gorospe, G., Lenz, H.J. & Tulpule, A. Phase I trial of antisense oligonucleotide vascular endothelial growth factor (VEGF-AS, Veglin) in patients with relapsed and refractory malignancies. Abstract #3008, ASCO Annual Meeting (2004).

  15. 15

    Kutryk, M.J. et al. Locan intracoronary administration of antisense oligonucleotide against c-myc for the prevention of in-stent resenosis: results of the randomized investigation by the Thoraxcenter of antisense DNA using local delivery and IVUS after coronary stenting (ITALICS) trial. J. Am. Coll. Cardiol. 39, 281–287 (2002).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Schreiber, S. et al. Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Chron's disease. Gastroenterology 120, 1339–1346 (2001).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Tanaka, M. & Nyce, J.W. Respirable antisense oligonucleotides: a new drug class for respiratory disease. Respir. Res. 2, 5–9 (2001).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Tamm, I., Dorken, B. & Hartmann, G. Antisense therapy in oncology: new hope for an old idea? Lancet 358, 489–497 (2001).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Lewis, E.J. et al. Non-specific antiviral activity of antisense molecules targeted to the E1 region of human papillomavirus. Antiviral Res. 48, 187–196 (2000).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Lisziewicz, J. et al. Antisense oligodeoxynucleotide phosphorothioate complementary to Gag mRNA blocks replication of human immunodeficiency virus type 1 in human peripheral blood cells. Proc. Natl. Acad. Sci. USA 91, 7942–7946 (1994).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Zhang, R. et al. Pharmacokinetics and tissue distribution in rats of an oligodeoxynucleotide phosphorothioate (GEM 91) developed as a therapeutic agent for human immunodeficiency virus type-1. Biochem. Pharmacol. 49, 929–939 (1995).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Grindel, J.M., Musick, T.J., Jiang, Z., Roskey, A. & Agrawal, S. Pharmacokinetics and metabolism of an oligodeoxynucleotide phosphorothioate (GEM91) in cynomolgus monkeys following intravenous infusion. Antisense Nucleic Acid Drug Dev. 8, 43–52 (1998).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Agrawal, S. & Martin, R.R. Was induction of HIV-1 through TLR9? J. Immunol. 171, 1621 (2003).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Bafica, A., Scanga, C.A., Schito, M., Chaussabel, D. & Sher, A. Influence of coinfecting pathogens on HIV expression: evidence for a role of Toll-like receptors. J. Immunol. 172, 7229–7234 (2004).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Janssens, S. & Beyaert, R. Role of Toll-like receptors in pathogen recognition. Clin. Microbiol. Rev. 16, 637–646 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Lee, J. et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 100, 6646–6651 (2003).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Kariko, K., Bhuyan, P., Capodici, J. & Weissman, D. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through Toll-like receptor 3. J. Immunol. 172, 6545–6549 (2004).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Kandimalla, E.R. et al. Conjugation of ligand at the 5′-end of CpG DNA affects immunostimulatory activity. Bioconjug. Chem. 13, 966–974 (2002).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Yu, D. et al. 'Immunomers' —novel 3′-3′-linked CpG oligodeoxyribonucleotides as potent immunomodulatory agents. Nucleic Acids Res. 30, 4460–4469 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Klinman, D.M. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 4, 249–258 (2004).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Kandimalla, E.R. & Agrawal, S. Agonists of Toll-like receptor 9: modulation of host immune responses with synthetic oligodeoxynucleotides. in Toll-receptors (ed. Rich, T.) 1–32 (Landes Biosciences, Florida, 2004).

    Google Scholar 

  36. 36

    Kulka, M., Alexopoulou, L., Flavell, R.A. & Metcalfe, D.D. Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J. Allergy Clin. Immunol. 114, 174–182 (2004).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Zhao, Q., Temsamani, J., Iadarola, P.L., Jiang, Z. & Agrawal, S. Effect of different chemically modified oligodeoxynucleotides on immune stimulation. Biochem. Pharmacol. 51, 173–182 (1996).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Weiner, G.J., Liu, H.M., Wooldridge, J.E., Dahle, C.E. & Krieg, A.M. Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc. Natl. Acad. Sci. USA 94, 10833–10837 (1997).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Jahrsdorfer, B. et al. Modulation of malignant B cell activation and apoptosis by bcl-2 antisense ODN and immunostimulatory CpG ODN. J. Leukoc. Biol. 72, 83–92 (2002).

    CAS  PubMed  Google Scholar 

  40. 40

    Suhadolnik, R.J. et al. Changes in the 2-5A synthetase/RNase L antiviral pathway in a controlled clinical trial with poly(I)-poly(C12U) in chronic fatigue syndrome. In Vivo 8, 599–604 (1994).

    CAS  PubMed  Google Scholar 

  41. 41

    Thompson, K.A. et al. Results of a double-blind placebo-controlled study of the double-stranded RNA drug polyI:polyC12U in the treatment of HIV infection. Eur. J. Clin. Microbiol. Infect. Dis. 15, 580–587 (1996).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Agrawal, S. & Kandimalla, E.R. Modulation of Toll-like Receptor 9 responses through synthetic immunostimulatory motifs of DNA. Ann. NY Acad. Sci. 1002, 30–42 (2003).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Simons, F.E., Shikishima, Y., Van Nest, G., Eiden, J.J. & HayGlass, K.T. Selective immune redirection in humans with ragweed allergy by injecting Amb 1 a linked to immunostimulatory DNA. J. Allergy Clin. Immunol. 113, 1144–1151 (2004).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Halperin, S.A. et al. A phase I study of the safety and immunogenicity of recombinant hepatitis B surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide adjuvant. Vaccine 21, 2461–2467 (2003).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Cooper, C.L. et al. Safety and immunogenicity of CpG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine 22, 3136–3143 (2004).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Sullivan, T. et al. Immunological activity of HYB2055, a TLR9 agonist, in healthy volunteers. (abstract no. 4707) Proc. Am. Assoc. Cancer Res. 45, 1087 (2004).

    Google Scholar 

  47. 47

    Martin, R. et al. A phase I placebo-controlled study in volunteers of escalating doses of HYB2055, a second-generation immunomodulatory agent based on CpG DNA. AACR-NCI-EORTC International Conference on Molecular Targets and Therapeutics, Boston, MA, November 17–21, 2003, Abstract no. C100 (2003).

  48. 48

    Agrawal, S. & Zhao, Q. Antisense therapeutics. Curr. Opin. Chem. Biol. 2, 519–528 (1998).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Galbraith, W.M., Hobson, W.C., Giclas, P.C., Schechter, P.J. & Agrawal, S. Complement activation and hemodynamic changes following intravenous administration of phosphorothioate oligonucleotides in monkey. Antisense Res. Dev. 4, 201–206 (1994).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Mark, G.S. Genta sued over NDA withdrawal. Nat. Biotechnol. 22, 788–789 (2004).

    Article  CAS  Google Scholar 

  51. 51

    Agrawal, S. et al. Mixed-backbone oligonucleotides as second generation antisense oligonucleotides: in vitro and in vivo studies. Proc. Natl. Acad. Sci. USA 94, 2620–2625 (1997).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Metelev, V., Lisziewicz, J. & Agrawal, S. Study of antisense oligonucleotide phosphorothioate containing segments of oligodeoxynucleotides and 2′-O-methyloligoribonucleotides. Bioorg. Med. Chem. Lett. 4, 2929–2934 (1994).

    CAS  Article  Google Scholar 

  53. 53

    Zhang, R. et al. In vivo stability, disposition and metabolism of a “hybrid” oligonucleotide phosphorothioate in rats. Biochem. Pharmacol. 50, 545–556 (1995).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Zhou, W. & Agrawal, S. Mixed-backbone oligonucleotides as second-generation antisense agents with reduced phosphorothioate-related side effects. Bioorg. Med. Chem. Lett. 8, 3269–3274 (1998).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Agrawal, S. et al. Absorption, tissue distribution and in vivo stability in rats of a hybrid antisense oligonucleotide following oral administration. Biochem. Pharmacol. 50, 571–576 (1995).

    CAS  PubMed  Article  Google Scholar 

  56. 56

    Mani, S. et al. Clinical studies in patients with solid tumors using a second-generation antisense oligonucleotide (GEM 231) targeted against protein kinase type 1. Ann. NY Acad. Sci. 1002, 252–262 (2003).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Sewell, K.L. et al. Phase I trial of ISIS 104838, a 2′-methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-α. J. Pharmacol. Exp. Ther. 303, 1334–1343 (2002).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Chi, K.N. et al. A phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of OGX-011, a 2′-methoxyethyl phosphorothioate antisense to clusterin, in patients with prostate cancer prior to radical prostatectomy. (abstract no. 3033), 2004 Annual Meeting of the American Society of Clinical Oncology. http://www.asco.org

  59. 59

    Dorsett, Y. & Tuschl, T. siRNAs: applications in functional genomics and potential as therapeutics. Nat. Rev. Drug Discov. 3, 318–329 (2004).

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Scacheri, P.C. et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1892–1897 (2004).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Jackson, A.L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).

    CAS  Article  PubMed  Google Scholar 

  62. 62

    Bridge, A.J., Pebernard, S., Ducraus, A., Nicoulaz, A.L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 34, 263–264 (2003).

    CAS  Article  PubMed  Google Scholar 

  63. 63

    Sledz, C.A., Holko, M., deVeer, M.J., Silverman, R.H. & Williams, B.R. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839 (2003).

    CAS  Article  PubMed  Google Scholar 

  64. 64

    Layzer, J.M. et al. In vivo stability of nuclease-resistant siRNAs. RNA 10, 766–771 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Braasch, D.A. et al. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg. Med. Chem. Lett. 14, 1139–1143 (2004).

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Paroo, Z. & Corey, D.R. Challenges for RNAi in vivo. Trends Biotechnol. 22, 390–394 (2004).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Hartman, G. & Krieg, A.M. CpG DNA and LPS induce distinct patterns of activation in human monocytes. Gene Ther. 6, 893–903 (1999).

    Article  CAS  Google Scholar 

  68. 68

    Davila, E., Velez, M.G., Heppelmann, C.J. & Celis, E. Creating space: an antigen-independent, CpG-induced peripheral expansion of naïve and memory T lymphocytes in a gull T-cell compartment. Blood 100, 2537–2545 (2002).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Kato, A. et al. Intereferon-α/β receptor-mediated selective induction of a gene cluster by CpG oligodeoxynucotide 2006. BMC Immunol. 4, 8–17 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sudhir Agrawal.

Ethics declarations

Competing interests

Both authors are employees of Hybridon and have company-offered employee stock options.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Agrawal, S., Kandimalla, E. Antisense and siRNA as agonists of Toll-like receptors. Nat Biotechnol 22, 1533–1537 (2004). https://doi.org/10.1038/nbt1042

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing