Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Therapy of mucosal candidiasis by expression of an anti-idiotype in human commensal bacteria

Abstract

Two recombinant strains of Streptococcus gordonii, secreting or displaying a microbicidal single-chain antibody (H6), and stably colonizing rat vagina, were used to treat an experimental vaginitis caused by Candida albicans. A post-challenge intravaginal delivery of the H6-secreting strain was as efficacious as fluconazole in rapidly abating the fungal burden. Three weeks after challenge, 75% and 37.5% of the rats treated with the H6-secreting or displaying bacteria, respectively, were cured of the infection, which persisted in 100% of the animals treated with a S. gordonii strain expressing an irrelevant single-chain antibody. Thus, a human commensal bacterium can be suitably engineered to locally release a therapeutic antibody fragment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Western blot analysis of recombinant S. gordonii strains expressing M6-H6 fusion proteins.
Figure 2: In vitro killing of Candida albicans by Streptococcus gordonii displaying scFvH6 on the surface.
Figure 3: Outcome of vaginal infection in rats infected with Candida albicans (day 0) and untreated or treated with Streptococcus gordonii strains (109 cells in 0.1 ml of each strain) or fluconazole (100 μg) as indicated, on days 0 (1 h post infection), 1, and 2 post infection (arrows).

Similar content being viewed by others

References

  1. Boyd, M.R. et al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob. Agents Chemother. 41, 1521–1530 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosenthal, S.L., Cohen, S.S. & Stanberry, L.R. Topical microbicides. Current status and research considerations for adolescent girls. Sex Transm. Dis. 25, 368–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Rex, J.H., Walsh, T.J. & Anaissie, E.J. Fungal infections in iatrogenically compromised hosts. Adv. Intern. Med. 43, 321–371 (1988).

    Google Scholar 

  4. Sobel, J.D. Pathogenesis and epidemiology of vulvovaginal candidiasis. Ann. NY Acad. Sci. 544, 547–557 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Polonelli, L. & Cassone, A. Novel strategies for treating candidiasis. Curr. Opin. Infect. Dis. 12, 61–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. De Bernardis, F. et al. Protective role of anti-mannan and anti-aspartyl proteinase antibodies in an experimental model of Candida albicans vaginitis in rats. Infect. Immun. 65, 3399–3405 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cassone, A., Conti, S., De Bernardis, F. & Polonelli, L. Antibodies, killer toxins and antifungal immunoprotection: a lesson from nature? Immunol. Today 18, 164–169 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Magliani, W., Conti, S., Gerloni, M., Bertolotti, D. & Polonelli, L. Yeast killer systems. Clin. Microbiol. Rev. 10, 369–400 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Magliani, W. et al. Therapeutic potential of antiidiotypic single chain antibodies with yeast killer toxin activity. Nat. Biotechnol. 15, 155–158 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Conti, S. et al. Mycobactericidal activity of human natural, monoclonal, and recombinant yeast killer toxin-like antibodies. J. Infect. Dis. 177, 807–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Medaglini, D., Rush, C.M., Sestini, P. & Pozzi, G. Commensal bacteria as vectors for mucosal vaccines against sexually transmitted diseases: vaginal colonization with recombinant streptococci induces local and systemic antibodies in mice. Vaccine 15, 1330–1337 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Medaglini, D., Oggioni, M.R. & Pozzi, G. Vaginal immunization with recombinant gram-positive bacteria. Am. J. Reprod. Immunol. 39, 199–208 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Di Fabio, S. et al. Vaginal immunization of Cynomolgus monkeys with Streptococcus gordonii expressing HIV-1 and HPV 16 antigens. Vaccine 16, 485–492 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Polonelli, L. & Morace, G. Production and characterization of yeast killer toxin monoclonal antibodies. J. Clin. Microbiol. 25, 460–462 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Oggioni, M.R. & Pozzi, G. A host–vector system for heterologous gene expression in Streptococcus gordonii. Gene 169, 85–90 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Magliani, W. et al. Neonatal mouse immunity against group B streptococcal infection by maternal vaccination with recombinant antiidiotypes. Nat. Med. 4, 705–709 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Navarre, W.W. & Schneewind, O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63, 174–229 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pozzi, G. et al. Delivery and expression of a heterologous antigen on the surface of streptococci. Infect. Immun. 60, 1902–1907 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Oggioni, M.R. Medaglini, D., Maggi, T. & Pozzi, G. Engineering the gram-positive cell surface for construction of bacterial vaccine vectors. Methods 19, 163–173 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Ricci, S. et al. Immunogenicity of the B monomer of Escherichia coli heat-labile toxin expressed on the surface of Streptococcus gordonii. Infect. Immun. 68, 760–766 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De Bernardis, F., Lorenzini, R. & Cassone, A. Rat model of Candida vaginal infection. In Handbook of animal models of infection (eds Zak, O. & Sande, M.A.) 735–740 (Academic Press, New York, NY; 1999).

    Chapter  Google Scholar 

  22. Osaki, T. et al. Establishment and characterisation of a monoclonal antibody to inhibit adhesion of Helicobacter pylori to gastric epithelial cells. J. Med. Microbiol. 47, 505–512 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Kelly, C.G. et al. A synthetic peptide adhesion epitope as a novel antimicrobial agent. Nat. Biotechnol. 17, 42–47 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Kokryakov, V.N. et al. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 327, 231–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Boyd, M.R. The position of intellectual property rights in drug discovery and development from natural products. J. Ethnopharmacol. 51, 17–25 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Qu, X.D., Harwig, S.S., Shafer, W.M. & Lehrer, R.I. Protegrin structure and activity against Neisseria gonorrhoeae. Infect. Immun. 65, 636–639 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Polonelli, L. et al. Monoclonal yeast killer toxin-like candidacidal antiidiotypic antibodies. Clin. Diagn. Lab. Immunol. 4, 142–146 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Séguy, N., Polonelli, L., Dei-Cas, E. & Cailliez, J.C. Perspectives in the control of Pneumocystis infections by using Pichia anomala killer toxin-like antiidiotypic antibodies. FEMS Immunol. Med. Microbiol. 22, 145–149 (1998).

    Article  PubMed  Google Scholar 

  29. Oggioni, M.R., Manganelli, R., Contorni, M., Tommasino, M. & Pozzi, G. Immunization of mice by oral colonization with live recombinant commensal streptococci. Vaccine 13, 775–779 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Fidel, P.L. & Sobel, J.D. Immunopathogenesis of recurrent vulvovaginal candidiasis. Clin. Microbiol. Rev. 9, 335–348 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Klein, R.S. et al. Oral candidiasis in high-risk patients as the initial manifestation of the acquired immunodeficiency syndrome. N. Engl. J. Med. 311, 354–358 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Cauda, R. et al. Role of protease inhibitors in preventing recurrent oral candidiasis in patients with HIV infection: a prospective case-control study. J. Acquir. Immun. Def. Syndr. 21, 20–25 (1999).

    Article  CAS  Google Scholar 

  33. Alexander, B.D. & Perfect, J.R. Antifungal resistance trends towards the year 2000. Implications for therapy and new approaches. Drugs 54, 657–678 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Sobel, J. & Muller, G. Comparison of itraconazole and ketoconazole in the treatment of experimental candidal vaginitis. Antimicrob. Agents Chemoter. 26, 266–267 (1984).

    Article  CAS  Google Scholar 

  35. Cassone, A., Boccanera, M., Ariani, D., Santoni, G. & De Bernardis F. Rats clearing a vaginal infection by Candida albicans acquire specific antibody-mediated resistance to vaginal reinfection. Infect. Immun. 63, 2619–2624 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Polonelli, L. et al. Human natural yeast killer toxin-like, candidacidal antibodies. J. Immunol. 156, 1880–1885 (1996).

    CAS  PubMed  Google Scholar 

  37. Hancock, R.E. & Lehrer, R. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 16, 82–88 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Commission of the European Union (fifth frame work contract QLK2-1999-00854) to MRO; from CNR (P. F. Biotecnologie, contract no. 97.01185.PF49) to GP and GT; from the Progetto Nazionale AIDS 1998 (contract no. 50B.32) to LP, and from the Progetto Nazionale AIDS 1998 (contract no. 50C/B) to AC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Polonelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beninati, C., Oggioni, M., Boccanera, M. et al. Therapy of mucosal candidiasis by expression of an anti-idiotype in human commensal bacteria. Nat Biotechnol 18, 1060–1064 (2000). https://doi.org/10.1038/80250

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing