Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants

Abstract

Plastid transformation in higher plants is accomplished through a gradual process, during which all the 300–10,000 plastid genome copies are uniformly altered. Antibiotic resistance genes incorporated in the plastid genome facilitate maintenance of transplastomes during this process. Given the high number of plastid genome copies in a cell, transformation unavoidably yields chimeric tissues, which requires the identification of transplastomic cells in order to regenerate plants. In the chimeric tissue, however, antibiotic resistance is not cell autonomous: transplastomic and wild-type sectors both have a resistant phenotype because of phenotypic masking by the transgenic cells. We report a system of marker genes for plastid transformation, termed FLARE-S, which is obtained by translationally fusing aminoglycoside 3"-adenyltransferase with the Aequorea victoria green fluorescent protein. 3"-adenyltransferase (FLARE-S) confers resistance to both spectinomycin and streptomycin. The utility of FLARE-S is shown by tracking segregation of individual transformed and wild-type plastids in tobacco and rice plants after bombardment with FLARE-S vector DNA and selection for spectinomycin and streptomycin resistance, respectively. This method facilitates the extension of plastid transformation to nongreen plastids in embryogenic cells of cereal crops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plastid transformation vector with FLARE-S as selectable marker.
Figure 2: luorescence microscopy to identify transplastomic leaf sectors by FLARE16-S expression.
Figure 3: Localization of FLARE16-S to tobacco plastids by laser scanning confocal microscopy in heteroplastomic tissue.
Figure 4: Immunoblot analysis of FLARE16-S accumulation in chloroplasts.
Figure 5: Amplification of border fragments confirms integration of FLARE-S genes into the plastid genome.
Figure 6: Localization of FLARE11-S3 to rice chloroplasts in the Os-pMSK49-5 line by laser scanning confocal microscopy.

Similar content being viewed by others

References

  1. Maliga, P. Towards plastid transformation in flowering plants. Trends Biotechnol. 11, 101–107 ( 1993).

    Article  CAS  Google Scholar 

  2. Daniell, H., Datta, R., Varma, S., Gray, S. & Lee, S.B. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol. 16, 345– 348 (1998).

    Article  CAS  Google Scholar 

  3. Zoubenko, O.V., Allison, L.A., Svab, Z. & Maliga, P. Efficient targeting of foreign genes into the tobacco plastid genome. Nuceic Acids Res. 22, 3819–3824 ( 1994).

    Article  CAS  Google Scholar 

  4. Svab, Z., Hajdukiewicz, P. & Maliga, P. Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA 87, 8526– 8530 (1990).

    Article  CAS  Google Scholar 

  5. Svab, Z. & Maliga, P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90, 913–917 (1993).

    Article  CAS  Google Scholar 

  6. Golds, T., Maliga, P. & Koop, H.U. Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabaccum. Biotechnology 11, 95–97 (1993).

    CAS  Google Scholar 

  7. Koop, H.U. et al. Integration of foreign sequences into the tobacco plastome via PEG-mediated protoplast transformation. Planta 199, 193–101 (1996).

    Article  CAS  Google Scholar 

  8. O'Neill, C., Horvath, G.V., Horvath, E., Dix, P.J. & Medgyesy, P. Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery system. Plant J. 3, 729– 738 (1993).

    Article  CAS  Google Scholar 

  9. Carrer, H., Hockenberry, T.N., Svab, Z. & Maliga, P. Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet. 241, 49– 56. (1993).

    Article  CAS  Google Scholar 

  10. Moll, B., Posby, L. & Maliga, P. Streptomycin and lincomycin resistance are selective plastid markers in cultured Nicotiana cells. Mol. Gen. Genet. 221, 245–250 (1990).

    Article  CAS  Google Scholar 

  11. Prasher, D.C., Eckenrode, V.K., Ward, W.W., Predergast, F.G. & Cormier, M.J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233 (1992).

    Article  CAS  Google Scholar 

  12. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  Google Scholar 

  13. Heim, R., Prasher, D.C. & Tsien, R.Y. Wavelength mutations and posttranslational autooxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12501–12504 (1994).

    Article  CAS  Google Scholar 

  14. Prasher, D.C. Using GFP to see the light. Trends Genet. 11, 320–323 (1995).

    Article  CAS  Google Scholar 

  15. Cubitt, A.B. et al. Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20, 448– 455 (1995).

    Article  CAS  Google Scholar 

  16. Misteli, T. & Spector, D.L. Applications of the green fluorescent protein in cell biology and biotechnology. Nat. Biotechnol. 15, 961–964 (1997).

    Article  CAS  Google Scholar 

  17. Pang, S-Z. et al. An improved green fluorescent protein gene as avital marker in plants. Plant Physiol. 112, 893– 900 (1996).

    Article  CAS  Google Scholar 

  18. Reichel, C. et al. Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono- and dicotyledonous plant cells. Proc. Natl. Acad. Sci. USA 93, 5888–5893 (1996).

    Article  CAS  Google Scholar 

  19. Rouwendal., G.J.A., Mendes, O., Wolbert, E.J.H. & de Boer, A.D. Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage. Plant Mol. Biol. 33, 989–999 (1997).

    Article  CAS  Google Scholar 

  20. Haseloff, J., Siemering, K.R., Prasher, D.C. & Hodge, S. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94, 2122– 2127 (1997).

    Article  CAS  Google Scholar 

  21. Davis, S.J. & Vierstra, R.D. Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol. Biol. 36, 521–528 ( 1998).

    Article  CAS  Google Scholar 

  22. Sheen, J., Hwang, S., Niwa, Y., Kobayashi, H. & Galbraith, D.W. Green fluorescent protein as a new vital marker in plant cells. Plant J. 8, 777– 784 (1995).

    Article  CAS  Google Scholar 

  23. Chiu, W-L. et al. Engineered gfp as a vital reporter in plants. Curr. Biol. 6, 325–330 ( 1996).

    Article  CAS  Google Scholar 

  24. Köhler, R.H., Cao, J., Zipfel, W.R., Webb, W.W. & Hanson, M.R. Exchange of protein molecules through connections between higher plant plastids. Science 276, 2039–2042 (1997).

    Article  Google Scholar 

  25. Baulcombe, D.C. Chapman, S. & Cruz, S.S. Jellyfish green fluorescent protein as a reporter for virus infections. Plant J. 7, 1045– 1053 (1995).

    Article  CAS  Google Scholar 

  26. Epel, B.L., Padgett, H.S., Heinlein, M. & Beachy, R. Plant virus movement protein dynamics probed with GFP-protein fusion. Gene 173, 75–79 ( 1996).

    Article  CAS  Google Scholar 

  27. Hibberd, J.M., Linley, P.J., Khan, M.S. & Gray, J.C. Transient expression of green fluorescent protein in various plastid types following micro-projectile bombardment. Plant J. 16, 627– 632 (1998).

    Article  CAS  Google Scholar 

  28. Fromm, H., Edelman, M., Aviv, D. & Galun, E. The molecular basis of rRNA-dependent spectinomycin resistance in Nicotiana chloroplasts. EMBO J. 11, 3233–3237 (1987).

    Article  Google Scholar 

  29. Crameri, A., Whitehorn, E.A., Tate, E. & Stemmer, W.P.C. Improved green fluorescent protein by molecular evolution by DNA shuffling. Nat. Biotechnol. 14, 315– 319 (1996).

    Article  CAS  Google Scholar 

  30. Maliga, P. Two plastid RNA polymerases of higher plants: an evolving story. Trends Plant Sci. 3, 4–6 (1998).

    Article  Google Scholar 

  31. Bendich, A.J. Why do chloroplasts and mitochondria contain so many copies of their genome? Bio-essays 6, 279–282 (1987).

    CAS  Google Scholar 

  32. Sikdar, S.R., Serino, G., Chaudhuri, S. & Maliga, P. Plastid transformation in Arabidopsis thaliana. Plant Cell Rep. 18, 20–24 ( 1998).

    Article  CAS  Google Scholar 

  33. Chinault, A.C. et al. Characterization of transferable plasmids for Shigella flexneri 2a that confer resistance trimethoprim, streptomycin and sulfonamides. Plasmid 15, 119–131 1986.

    Article  CAS  Google Scholar 

  34. Staub, J.M. & Maliga, P. Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA. EMBO J. 12, 601–606 (1993).

    Article  CAS  Google Scholar 

  35. Hiratsuka, J. et al. The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217, 185–194 (1989).

    Article  CAS  Google Scholar 

  36. Kolodziej, P.A. & Young, R.A. Epitope tagging and protein surveillance. Methods Enzymol. 194, 508–519 (1991).

    Article  CAS  Google Scholar 

  37. Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 473–497 (1962).

    Article  CAS  Google Scholar 

  38. Tompson, J.A., Abdullah, R. & Cocking, E.C. Protoplast culture of rice using media solidified with agarose. Plant Science 47, 123– 133 (1986).

    Article  Google Scholar 

  39. Muller, A.J. & Grafe, R. Isolation and characterization of cell lines of Nicotiana tabacum lacking nitrate reductase. Mol. Gen. Genet. 161, 67–76 (1978).

    Article  Google Scholar 

  40. Zhang, W. & Wu, R. Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor. Appl. Genet. 76, 835–840 (1988).

    Article  CAS  Google Scholar 

  41. Mettler, I.J. A simple and rapid method for minipreparation of DNA from tissue-cultured plant cells. Plant Mol. Biol. Rep. 5, 346 –349 (1987).

    Article  CAS  Google Scholar 

  42. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hiroshi Kuroda for providing plasmids pHK10 and pHK34, Peter Hajdukiewicz for plasmids containing TpsbA and engineered gfp, and Millie Georgiadis for discussions concerning the design of fusion proteins. This research was supported by the Rockefeller Foundation Rice Biotechnology Program through a Postdoctoral Fellowship Award to M.S.K. and a Research Grant to P.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pal Maliga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M., Maliga, P. Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17, 910–915 (1999). https://doi.org/10.1038/12907

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12907

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing