Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling

Abstract

We describe genetic screens in Saccharomyces cerevisiae designed to identify mammalian nonreceptor modulators of G-protein signaling pathways. Strains lacking a pheromone-responsive G-protein coupled receptor and expressing a mammalian-yeast Gα hybrid protein were made conditional for growth upon either pheromone pathway activation (activator screen) or pheromone pathway inactivation (inhibitor screen). Mammalian cDNAs that conferred plasmid-dependent growth under restrictive conditions were identified. One of the cDNAs identified from the activator screen, a human Ras-related G protein that we term AGS1 (for activator of G-protein signaling), appears to function by facilitating guanosine triphosphate (GTP) exchange on the heterotrimeric Gα. A cDNA product identified from the inhibitor screen encodes a previously identified regulator of G-protein signaling, human RGS5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engineering of the yeast pheromone response pathway.
Figure 2: Characterization of mammalian modulators of the yeast pheromone pathway.
Figure 3: Characterization of clone L1 (AGS1).
Figure 4: Gα selectivity profile of AGS1.

Similar content being viewed by others

References

  1. Spence, P. Obtaining value from the human genome: a challenge for the pharmaceutical industry. Drug Disc. Today 3, 179– 188 (1998).

    Article  CAS  Google Scholar 

  2. Simonsen, H. & Lodish, H.F. Cloning by function: expression cloning in mammalian cells. Trends Pharmacol. Sci. 15, 437–441 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Evans, M.J., Carlton, M.B. & Russ, A.P. Gene trapping and functional genomics. Trends Genet. 13, 370–374 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Hicks, G.G. et al. Functional genomics in mice by tagged sequence mutagenesis. Nat. Genet. 16, 338–344 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  5. Whitney, M. et al. A genome-wide functional assay of signal transduction in living mammalian cells. Nat. Biotechnol. 16, 1329– 1333 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Khazak, V., Sadhale, P.P., Woychik, N.A., Brent, R. & Golemis, E.A. Human RNA polymerase II subunit hsRPB7 functions in yeast and influences stress survival and cell morphology. Mol. Cell. Biol. 6, 759– 775 (1995).

    Article  CAS  Google Scholar 

  7. Law, S.F. et al. Human enhancer of filamentation 1, a novel p130cas-like docking protein, associates with focal adhesion kinase and induces pseudohyphal growth in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 3327 –3337 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kurjan, J. The pheromone response pathway in Saccharomyces cerevisiae. Annu. Rev. Genet. 27, 147–179 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Bardwell, L., Cook, J.G., Inouye, C.J. & Thorner, J. Signal propagation and regulation in the mating pheromone response pathway of the yeast Saccharomyces cerevisiae. Dev. Biol. 166, 363– 379 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Chang, F. & Herskowitz, I. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63, 999–1011 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Peter, M. & Herskowitz, I. Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science 265, 1228–1231 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. King, K., Dohlman, H.G., Thorner, J., Caron, M.G. & Lefkowitz, R.J. Control of yeast mating signal transduction by a mammalian β2-adrenergic receptor and G s α subunit. Science 250, 121 –123 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Stevenson, B.J., Rhodes, N., Errede, B. & Sprague, G.F. Constitutive mutants of the protein kinase STE11 activate the yeast pheromone response pathway in the absence of the G protein. Genes Dev. 6, 1293–1304 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Price, L.A., Kajkowski, E.M., Hadcock, J.R., Ozenberger, B.A. & Pausch, M.H. Functional coupling of a mammalian somatostatin receptor to the yeast pheromone response pathway. Mol. Cell. Biol. 15, 6188– 6195 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manfredi, J.P. et al. Yeast α mating factor structure-activity relationship derived from genetically selected peptide agonists and antagonists of Ste2p. Mol. Cell. Biol. 16, 4700–4709 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stevenson, B.J. et al. Mutation of RGA1, which encodes a putative GTPase-activating protein for the polarity-establishment protein Cdc42p, activates the pheromone-response pathway in the yeast Saccharomyces cerevisiae. Genes Dev. 9, 2949–2963 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  17. Klein, C. et al. Identification of surrogate agonists for the human FPRL-1 receptor by autocrine selection in yeast. Nat. Biotechnol. 16, 1334–1337 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Beals, C.R., Wilson, C.B. & Perlmutter, R.M. A small multigene family encodes Gi signal-transduction proteins. Proc. Natl. Acad. Sci. USA 84, 7886–7890 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sato, M., Ribas, C., Hildebrandt, J.D. & Lanier, S.M. Characterization of a G protein activator in the neuroblastoma glioma cell hybrid NG108-15. J. Biol. Chem. 271, 30052 –30060 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Schneider, J.C. & Guarente, L. Vectors for expression of cloned genes in yeast: regulation, overproduction, and underproduction. Methods Enzymol. 194, 373– 388 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Kemppainen, R.J. & Behrend, E.N. Dexamethasone rapidly induces a novel Ras superfamily member-related gene in AtT-20 cells. J. Biol. Chem. 273, 3129– 3131 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, E., Taussig, R. & Gilman, A.G. The G226A mutant of Gsα highlights the requirement for dissociation of G protein subunits. J. Biol. Chem. 267, 1212–1218 ( 1992).

    CAS  PubMed  Google Scholar 

  23. Berman, D.M., Wilkie, T.M. & Gilman, A.G. GAIP and RGS4 are GTPase activating proteins for the Gi subfamily of G protein α subunits. Cell 86 , 445–452 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Valencia, A., Chardin, P., Wittinghofer, A. & Sander, C. The ras protein family: evolutionary tree and role of conserved amino acids. Biochemistry 30, 4637– 4648 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Sikorski, R.S. & Boeke, J.D. In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol. 194, 302–318 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  26. Schena, M., Picard, D. & Yamamoto, K.R. Vectors for constitutive and inducible gene expression in yeast. Methods Enzymol. 194, 389– 398 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, C., Zheng, B., Han, J. & Lin, S.C. Characterization of a novel mammalian RGS protein that binds to G alpha proteins and inhibits pheromone signaling in yeast. J. Biol. Chem. 272, 8679–8685 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Sambrook, J., Fritsch, E.F. & Maniatis, T. in Molecular cloning: a laboratory manual, 2nd edn (Cold Spring Harbor Laboratory Press, New York; 1989).

    Google Scholar 

  29. Ito, H., Fukuda, Y., Murata, K. & Kimora, A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163–168 ( 1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sapperstein, S., Berkower, C. & Michaelis, S. Nucleotide sequence of the yeast STE14 gene, which encodes farnesylcysteine carboxylmethyltransferase, and demonstration of its essential role in a-factor export. Mol. Cell. Biol. 14, 1438–1449 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rothstein, R. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194, 281– 302 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Boeke, J.D., Trueheart, J., Natsoulis, G. & Fink, G.R. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154, 164–195 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Dietzel, C. & Kurjan, J. The yeast SCG1 gene: a Gα-like protein implicated in the a- and α-factor response pathway. Cell 50, 1001–1010 ( 1987).

    Article  CAS  PubMed  Google Scholar 

  34. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fowlkes, D.M. et al. Yeast cells engineered to produce pheromone system protein surrogates, and uses thereof. Patent no. 5,789,184 (1998).

  36. Broach, J.R., Li, Y.Y., Wu, L.C.C. & Jayarum, M. in Experimental manipulation of gene expression (ed. Inouye, M.) (Academic Press, New York; 1983).

    Google Scholar 

  37. Strathern, J.N. & Higgins, D.R. Recovery of plasmids from yeast into Escherichia coli: shuttle vectors. Methods Enzymol. 194, 319–329 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Stueland, C.S., Lew, D.J., Cismowski, M.J. & Reed, S.I. Full activation of p34CDC28 histone H1 kinase activity is unable to promote entry into mitosis in checkpoint-arrested cells of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 3744–3755 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. Elliott Ross, Henry Bourne, Josh Trueheart, and Ben Benton for helpful discussions and comments, Gary Meissner, Ralph Vaccaro, and Jin Xie for their technical assistance, and Drs. George Sprague, Susan Michaelis, Roger Perlmuter, Mel Simon, Janet Kurjan, and David Stone for providing materials used in this study. S.M.L. was supported by the National Institutes of Health grant RO1-NS24821. A.T. was a visiting graduate student from the Department of Pharmaceutical Sciences, University of Tokyo, Japan, and was supported in part by a University of Tokyo scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emir Duzic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cismowski, M., Takesono, A., Ma, C. et al. Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling. Nat Biotechnol 17, 878–883 (1999). https://doi.org/10.1038/12867

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12867

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing