Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A rational design strategy for protein hormone superagonists

Abstract

By combining evolutionary considerations, sequence comparisons and homology modeling we have designed recombinant human thyroid-stimulating hormone (hTSH) analogs with increased receptor binding and activity. The introduction of seven basic residues into the peripheral loops of hTSH resulted in up to a 50,000-fold increase in receptor binding affinity and 1300-fold increase in intrinsic activity. Such analogs are not only of potential clinical interest but can be tools to explore molecular aspects of conventional as well as nonclassical actions of glycoprotein hormones. These design strategies should be applicable to the development of novel analogs of other related hormones and growth factors with a variety of therapeutic and basic science applications, particularly for proteins that have undergone evolutionary decrease in bioactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lowman, H.B. and Wells, J.A. 1993. Affinity maturation of human growth hormone by monovalent phage display. J. Mol. Biol. 234: 564–578.

    Article  CAS  Google Scholar 

  2. Toniatti, C., Cabibbo, A., Sporena, E., Salvati, A.L., Cerretani, M., Serafini, S. et al. 1996. Engineering human interleukin-6 to obtain variants with strongly enhanced bioactivity. EMBO J. 15: 2726–2737.

    Article  CAS  Google Scholar 

  3. Grossmann, M., Weintraub, B.D., and Szkudlinski, M.W. 1997. Novel insights into the molecular mechanisms of human thyrotropin action: structural, physiological and therapeutic implications for the glycoprotein hormone family. Endocr. Rev. 18: 476–501.

    Article  CAS  Google Scholar 

  4. Lapthorn, A.J., Harris, D.C., Littlejohn, A., Lustbader, J.W., Canfield, R.E., Machin, K.J. et al. 1994. Crystal structure of human chorionic gonadotropin. Nature 369: 455–461.

    Article  CAS  Google Scholar 

  5. Wu, H., Lustbader, J.W., Liu, Y., Canfield, R.E., and Hendrickson, W.A. 1994. Structure of human chorionic gonadotropin at 2.6 Å resolution from MAD analysis of the selenomethionyl protein. Structure 2: 545–558.

    Article  CAS  Google Scholar 

  6. Keyt, B.A., Nguyen, H.V., Berleau, L.T., Duarte, C.M., Park, J., Chen, H. et al. 1996. Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors. Generation of receptor-selective VEGF variants by site-directed mutagenesis. J. Biol. Chem. 271: 5638–5646.

    Article  CAS  Google Scholar 

  7. Szkudlinski, M.W., Teh, N.G., Grossmann, M., Tropea, J.E., and Weintraub, B.D. 1996. Engineering human glycoprotein hormone superactive analogues. Nat. Biotechnol. 14: 1257–1263.

    Article  CAS  Google Scholar 

  8. Pierce, J.G. and Parsons, T.F. 1981. Glycoprotein hormones: structure and function. Annu. Rev. Biochem. 50: 465–495.

    Article  CAS  Google Scholar 

  9. Ferrara, N. and Davis-Smyth, T. 1997. The biology of vascular endothelial growth factor. Endocr. Rev. 18: 14–25.

    Article  Google Scholar 

  10. Moyle, W.R., Campbell, R.K., Rao, S.N., Ayad, N.G., Bernard, M.P., Han, Y. et al. 1995. Model of human chorionic gonadotropin and lutropin receptor interaction that explains signal transduction of the glycoprotein hormones. J. Biol. Chem. 270: 20020–20031.

    Article  CAS  Google Scholar 

  11. Moyle, W.R., Campbell, R.K., Myers, R.V., Bernard, M.P., Han, Y., and Wang, X. 1994. Co-evolution of ligand-receptor pairs. Nature 368: 251–255.

    Article  CAS  Google Scholar 

  12. Grossmann, M., Szkudlinski, M.W., Wong, R., Dias, J.A., Ji, T.H., and Weintraub, B.D. 1997. Substitution of the seat-belt region of the thyrotropin (TSH)-β subunit with the corresponding regions of choriogonadotropin or foliitropin confers luteotropic, but not follitropic activity to chimeric TSH. J. Biol. Chem. 272: 15532–15540.

    Article  CAS  Google Scholar 

  13. Fuh, G., Cunningham, B.C., Fukunaga, R., Nagata, S., Goeddel, D.V., and Wells, J.A. 1992. Rational design of potent antagonist to the human growth hormone receptor. Science 256: 1677–1680.

    Article  CAS  Google Scholar 

  14. Kajava, A.V., Vassart, G., and Wodak, S.J. 1995. Modeling of the three-dimensional structure of proteins with the typical leucine-rich repeats. Structure 3: 867–877.

    Article  CAS  Google Scholar 

  15. Bhowmick, N., Huang, J., Puett, D., Isaacs, N.W. and Lapthorn, A.J. 1996. Determination of residues important in hormone binding to the extracellular domain of the luteinizing hormone/chorionic gonadotropin receptor by site-directed mutagenesis and modeling. Mol. Endocrinol. 10: 1147–1159.

    CAS  PubMed  Google Scholar 

  16. Schreiber, G. and Fersht, A.R., 1996. Rapid, electrostatically assisted association of proteins. Nat. Struct. Biol. 3: 427–431.

    Article  CAS  Google Scholar 

  17. Wang, Y., Shen, B.J., and Sebald, W. 1997. A mixed-charge pair in human inter-leukin-4 dominates high-affinity interaction with the receptor alpha chain. Proc. Natl. Acad. Sci. USA 94: 1657–1662.

    Article  CAS  Google Scholar 

  18. Hebert, T.E., Moffett, S., Morello, J.P., Loisel, T.P., Bichet, D.G., Barret, C. et al. 1996. A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J. Biol. Chem. 271: 16384–1692.

    Article  CAS  Google Scholar 

  19. Vassart, G., Van Sande, J., Parma, J., Tonacchera, M., Duprez, L., Swillen, S. et al. 1996. Activating mutations of the TSH receptor gene cause thyroid diseases. Ann. Endocrinol. 57: 50–54.

    CAS  Google Scholar 

  20. Wang, J., Whetsell, M., and Klein, J.R. 1997. Local hormone networks and intestinal T cell homeostasis. Science 275: 1937–1939.

    Article  CAS  Google Scholar 

  21. Grossmann, M., Szkudlinski, M.W., Tropea, J.E., Bishop, L.A., Thotakura, N.R., Schofield, P.R. et al. 1995. Expression of human thyrotropin cell lines with different glycosylation patterns combined with mutagenesis of specific glycosylation sites. Characterization of a novel role for the oligosaccharides in the in vitro and in vivo bioactivity. J. Biol. Chem. 270: 29378–29385.

    Article  CAS  Google Scholar 

  22. Grossmann, M., Szkudlinski, M.W., Zeng, H., Kraiem, Z., Ji, I., Tropea, J.E. et al. 1995. Role of the carboxy-terminal residues of the alpha-subunit in the expression and bioactivity of human thyroid-stimulating hormone. Mol. Endocrinol. 9: 948–958.

    CAS  PubMed  Google Scholar 

  23. Perret, J., Ludgate, M., Libert, F., Gerard, C., Dumont, J.E., Vassart, G. et al. 1990. Stable expression of the human TSH receptor in CHO cells and characterization of differentially expressing clones. Biochem. Biophys. Res. Commun. 171: 1044–1050.

    Article  CAS  Google Scholar 

  24. Szkudlinski, M.W., Grossmann, M., and Weintraub, B.D. 1997. Progress in understanding structure-function relationships of human thyroid-stimulating hormone. Current Opinion in Endocrinology and Diabetes 4: 354–363.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossmann, M., Leitolf, H., Weintraub, B. et al. A rational design strategy for protein hormone superagonists. Nat Biotechnol 16, 871–875 (1998). https://doi.org/10.1038/nbt0998-871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0998-871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing