Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Evaluating and enhancing ribozyme reaction efficiency in mammalian cells

Abstract

The ability of ribozymes to cleave specific transcripts and repair defective RNAs in the test tube has engendered speculation about their potential clinical utility. Therapeutic development has been hindered by an inability to evaluate and optimize the efficiency of RNA catalysis in vivo. We describe an experimental system that has allowed us to assess and enhance the efficiency with which a trans-splicing group I ribozyme reacts with a targeted RNA in mammalian cells. These results demonstrate that the ribozyme can convert up to 49% of a specific substrate RNA to product in the cellular environment and that the efficiency of this reaction is apparently a function of the ribozyme's ability to find and bind to the substrate RNA in the cell. These observations suggest that trans-splicing ribozymes may become useful reagents to repair a therapeutically significant fraction of mutant RNAs associated with a variety of genetic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Herschlag, D. and Cech, T.R. 1990 Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry 29: 10159–10171.

    Article  CAS  PubMed  Google Scholar 

  2. Hertel, K.J., Herschlag, D. and Uhlenbeck, O.C. 1994. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 33: 3374–3385.

    Article  CAS  PubMed  Google Scholar 

  3. Pyle, A.M. and Green, J.B. 1994. Building a kinetic framework for the group II intron ribozyme activity: quantitation of interdomain binding and reaction rate. Biochemistry 33: 2716–2725.

    Article  CAS  PubMed  Google Scholar 

  4. Beebe, J.A. and Fierke, C.A. 1994. A kinetic mechanism for cleavage of precursor tRNA(Asp) catalyzed by the RNA component of Bacillus subtilis ribonuclease R. Biochemistry 33: 10294–10304.

    Article  CAS  PubMed  Google Scholar 

  5. Zaug, A.J., Been, M.D. and Cech, T.R., 1986. Tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature 324: 429–433

    Article  CAS  PubMed  Google Scholar 

  6. Uhlenbeck, O.C. 1986. A small catalytic oligoribonucleotide. Nature 328: 596–600.

    Article  Google Scholar 

  7. Haseloff, J. and Gerlach, W.L. 1988. Simple RNA enzymes with new and highly specific endoribonuclease activities.Nature 334: 585–591.

    Article  CAS  PubMed  Google Scholar 

  8. Feldstein, P.A., Buzayan, J.M. and Bruening, G. 1990. Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene 3: 53–61.

    Google Scholar 

  9. Hampel, A., Tritz, R., Hicks, M. and Cruz, P. 1990. Hairpin' catalytic RNA model: evidence for helices and sequence requirement for substrate RNA. Nucl.Acids Res. 18: 299–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chowrira, B.M. and Burke, J.M. 1991. Binding and cleavage of nucleic acids by the hairpin ribozyme. Biochemistry 30: 8518–8522.

    Article  CAS  PubMed  Google Scholar 

  11. Forester, A.C. and Altman, S. 1990. External guide sequence for an RNA enzyme. Science 249: 783–786.

    Article  Google Scholar 

  12. Perrotta, A.T. and Been, M.D. 1992. Cleavage of oligoribonucleotides by a ribozyme derived from the hepatitis delta virus RNA sequence. Biochemistry 31: 16–21.

    Article  CAS  PubMed  Google Scholar 

  13. Inoue, T., Sullivan, F.X. and Cech, T.R. 1985. Intermotecular exon ligation of the rRNA precursor of Tetrahymena: oligonucleotides can function as 5' exons. Cell 43: 431–437.

    Article  CAS  PubMed  Google Scholar 

  14. Been, M.D. and Cech, T.R. 1986. One binding site determines sequence specificity of Tetrahymena pre-rRNA self-splicing, trans-splicing, and RNA enzyme activity. Cell 47: 207–216.

    Article  CAS  PubMed  Google Scholar 

  15. Cech, T.R. 1988. Ribozymes and their medical implications. JAMA. 260: 3030–3034.

    Article  CAS  PubMed  Google Scholar 

  16. Rossi, J.J 1992. Ribozymes. Curr. Opin. Biotechnol. 3: 3–7.

    Article  CAS  PubMed  Google Scholar 

  17. Yu, M., Poeschla, E. and Wong-Staal, F. 1994. Progress towards gene therapy for HIV infection. Gene Ther. 1: 13–26.

    CAS  PubMed  Google Scholar 

  18. Sullenger, B.A. 1995. Revising messages traveling along the cellular information superhighway. Chem. & Biol. 2: 249–253.

    Article  CAS  Google Scholar 

  19. Cech, T.R. 1987. The chemistry of self splicing RNA and RNA enzymes. Science 236: 1532–1539.

    Article  CAS  PubMed  Google Scholar 

  20. Cech, T.R. 1990. Self-splicing of group I introns. Ann. Rev. Biochem. 59: 543–568.

    Article  CAS  PubMed  Google Scholar 

  21. Jones, J.T., Lee, S.-W. and Sullenger, B.A. 1996. Tagging ribozyme reaction sites to follow trans-splicing in mammalian cells. Nature Medicine 2: 643–648.

    Article  CAS  PubMed  Google Scholar 

  22. Zaug, A.J., Grosshans, C.A. and Cech, T.R. 1988. Sequence-specific endoribonuclease activity of the Tetrahymena ribozyme: enhance cleavage of certain oligonucleotide substrates that form mismatched ribozyme-substrate complexes. Biochemistry 27: 8924–8931.

    Article  CAS  PubMed  Google Scholar 

  23. Gilliland, G., Perrin, S. and Bunn, H.F. 1990. Competitve PCR for quantitation of mRNA, in PCR protocols: A guide to methods and applications. Innis, MA, Gelfand, D.H., Sninsky, J.J., and Whit, T.J. (eds.) Academic Press, San Diego, CA.

    Google Scholar 

  24. Sullenger, B.A. and Cech, T.R. 1994. Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature 371: 619–622.

    Article  CAS  PubMed  Google Scholar 

  25. Elroy-Stein, O. and Moss, B. 1990. Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 87: 6743–6747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sullenger, B.A. and Cech, T.R. 1993. Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA. Science 202: 1566–1569.

    Article  Google Scholar 

  27. Yarus, M.A. 1988. A specific amino acid binding site composed of RNA. Science 240: 1751–1758.

    Article  CAS  PubMed  Google Scholar 

  28. Yarus, M. 1989. Specificity of arginine binding by the Tetrahymena intron. Biochemistry 28: 980–995.

    Article  CAS  PubMed  Google Scholar 

  29. Murphy, F.L. and Cech, T.R. 1989. Alteration of substrate specificity for the endoribonucleolytic cleavage of RNA by the Tetrahymena ribozyme. Proc. Natl. Acad. Sci. USA 86: 9218–9222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, J., Sullenger, B. Evaluating and enhancing ribozyme reaction efficiency in mammalian cells. Nat Biotechnol 15, 902–905 (1997). https://doi.org/10.1038/nbt0997-902

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0997-902

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing