Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Site-specific dissection of substrate recognition by thrombin

Abstract

Current approaches to enzyme specificity focus on the identification of consensus sequences from combinatorial chemistry libraries or phage display. These synthetic substrates can also be used as sensitive probes for the molecular environment of the enzyme specificity sites to determine how they contribute to recognition in the transition state. Libraries constructed to include all relevant species for a site-specific analysis contain a relatively small number of substrates and provide quantitative information on the energetics of recognition that can be exploited in studies of structure-function relations and rational drug design. We have constructed a library of substrates carrying substitutions at P1, P2, and P3 to probe the response of the specificity sites S1, S2, and S3 of thrombin. The library has been used to identify differences between the anticoagulant slow and procoagulant fast forms of thrombin and the structural origin of the effects. The results also offer new guidelines for the design of active-site inhibitors of thrombin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wells, J.A. 1990. Additivity of mutational effects in proteins. Biochemistry 29: 8509–6517.

    Article  CAS  Google Scholar 

  2. Wells, J.A. 1996. Hormone mimicry. Science 273: 449–450.

    Article  CAS  Google Scholar 

  3. Clackson, T. and Wells, J.A. 1995. A hot spot of binding energy in a hormone-receptor interface. Science 267: 383–386.

    Article  CAS  Google Scholar 

  4. Tsiang, M., Jain, A.K., Dunn, K.E., Rojas, M.E., Leung, L.L.K., and Gibbs, C.S. 1995. Functional mapping of the surface residues of human thrombin. J. Biol. Chem. 270: 16854–16863.

    Article  CAS  Google Scholar 

  5. Dickinson, C.D., Kelly, C.R., and Ruf, W. 1996. Identification of surface residues mediating tissue factor binding and catalytic function of the serine protease factor Vila. Proc. Natl. Acad. Sci. USA 93: 14379–14384.

    Article  CAS  Google Scholar 

  6. Carter, P. and Wells, J.A. 1988. Dissecting the catalytic triad of a serine protease. Nature 332: 564–568.

    Article  CAS  Google Scholar 

  7. Perona, J.J. and Craik, C.S. 1995. Structural basis of substrate specificity in serine proteinases. Protein Sci. 4: 337–360.

    Article  CAS  Google Scholar 

  8. Guinto, E.R., Vindigni, A., Ayala, Y., Dang, Q.D., and Di Cera, E. 1995. Identification of residues linked to the slow→fast transition of thrombin. Proc. Natl. Acad. Sci. USA 92: 11185–11189.

    Article  CAS  Google Scholar 

  9. Devlin, J.J., Panganiban, L.C., and Devlin, P.E. 1990. Random peptide libraries: a source of specific protein binding molecules. Science 249: 404–406.

    Article  CAS  Google Scholar 

  10. Smith, G.P. and Petrenko, V.A. 1997. Phage display. Chem. Rev. 97: 391–410.

    Article  CAS  Google Scholar 

  11. Di Cera, E. 1995. Thermodynamic theory of site-specific binding processes in biological macromolecules. Cambridge University, Cambridge, UK.

    Book  Google Scholar 

  12. Dang, Q.D., Guinto, E.R., and Di Cera, E. 1997. Rational engineering of activity and specificity in a serine protease. Nature Biotechnology 15: 146–149.

    Article  CAS  Google Scholar 

  13. Bode, W., Turk, D., and Karshikov, A. 1992. The refined 1. 9-Å X-ray crystal structure of D-Phe-Pro-Arg-chloromethylketone-inhibited human α-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci. 1: 426–471.

    Article  CAS  Google Scholar 

  14. Schechter, I. and Berger, A. 1967. On the size of the active site in proteinases. I. Papain. Biochem. Biophys. Res. Commun. 27: 157–162.

    Article  CAS  Google Scholar 

  15. Stubbs, M., Oschkinat, H., Mayr, I., Huber, R., Angliker, H., Stone, S.R., and Bode, W. 1992. The interaction of thrombin with fibrinogen: a structural basis for its specificity. Eur. J. Biochem. 206: 187–195.

    Article  CAS  Google Scholar 

  16. Dang, Q.D. and Di Cera, E. 1996. Residue 225 determines the Na+-induced allosteric regulation of catalytic activity in serine proteases. Proc. Natl. Acad. Sci. USA 93: 10653–10656.

    Article  CAS  Google Scholar 

  17. Bartunik, H.D., Summers, L.J., and Bartsch, H.H. 1989. Crystal structure of bovine β-trypsin at 1. 5 Å resolution in a crystal form with low molecular packing density. J. Mol. Biol. 210: 813–828.

    Article  CAS  Google Scholar 

  18. Sharma, S.K. and Castellino, F.J. 1990. The chemical synthesis of the chro-mogenic substrates, H-o-Val-Leu-Lys-p-nitroanilide (S2251) and H-D-lle-Pro-Arg-p-nitroanilide (S2288). Thromb. Res. 57: 127–138.

    Article  CAS  Google Scholar 

  19. Guinto, E.R. and Di Cera, E. 1997. Critical role of W60d in thrombin allostery. Biophys. Chem. 64: 103–109.

    Article  CAS  Google Scholar 

  20. Zhang, E. and Tulinsky, A. 1997. The molecular environment of the Na+ binding site of thrombin. Biophys. Chem. 63: 186–200.

    Google Scholar 

  21. Banfield, D.K. and MacGillivray, R.T.A. 1992. Partial characterization of vertebrate prothrombin cDNAs: amplification and sequence analysis of the B chain of thrombin from nine different species. Proc. Natl. Acad. Sci. USA 89: 2779–2783.

    Article  CAS  Google Scholar 

  22. Tucker, T.J., Lumma, W.C., Naylor-Olsen, A.M., Lewis, S.D., Lucas, R., Freidinger, R.M., et al. 1997. Design of highly potent noncovalent thrombin inhibitors that utilize a novel lipophilic binding pocket in the thrombin active site. J. Med. Chem. 40: 830–832.

    Article  CAS  Google Scholar 

  23. Malikayil, J.A., Burkhart, J.R., Schreuder, H.A., Broersma, R.J., Tardif, C., Kutcher, L.W., et al. 1997. Molecular design and characterization of an α-thrombin inhibitor containing a novel P1 moiety. Biochemistry 26: 1034–1040.

    Article  Google Scholar 

  24. Claeson, G. 1994. Synthetic peptides and peptidomimetics as substrates and inhibitors of thrombin and other proteases in the blood coagulation system. Blood Coagul. Fibrin. 5: 411–436.

    CAS  Google Scholar 

  25. De Filippis, V., Vindigni, A., Altichieri, L., and Fontana, A. 1995. Core domain of hirudin from the leech Hirudinaria manillensis: chemical synthesis, purification, and characterization of a Trp3 analog of fragment 1-47. Biochemistry 34: 9552–9564.

    Article  CAS  Google Scholar 

  26. Vindigni, A., White, C.E., Komives, E.A., and Di Cera, E. 1997. Energetics of thrombin-thrombomodulin interaction. Biochemistry 36: 6674–6681.

    Article  CAS  Google Scholar 

  27. Wells, C.M. and Di Cera, E. 1992. Thrombin is a Na+ activated enzyme. Biochemistry 31: 11721–11730.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vindigni, A., Dang, Q. & Cera, E. Site-specific dissection of substrate recognition by thrombin. Nat Biotechnol 15, 891–895 (1997). https://doi.org/10.1038/nbt0997-891

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0997-891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing