Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

The antifreeze potential of the spruce budworm thermal hysteresis protein

Abstract

Antifreeze proteins (AFP) inhibit ice growth by surface adsorption that results in a depression of the freezing point below the melting point. The maximum level of this thermal hysteresis shown by the four structurally unrelated fish AFP is approximately 1.5°C. In contrast, hemolymph and crude extracts from insects can have 5° to 10°C of thermal hysteresis. Based on the isolation, cloning, and expression of a thermal hysteresis protein (THP) from spruce budworm (Choristoneura fumiferana), the vastly greater activity is attributable to a 9 kDa protein. This novel, threonine- and cysteine-rich THP has striking effects on ice crystal morphology, both before and during freezing. It is also 10 to 30 times more active than any known fish AFP, offering the prospect of superior antifreeze properties in cryoprotective applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hew, C.L. and Yang, D.S. 1992. Protein interaction with ice. Eur. J. Biochem. 203: 33–42.

    Article  CAS  Google Scholar 

  2. Ramsey, A.J. 1964. The rectal complex of the mealworm Tenebrio molitor L. Philos. Trans. R. Soc. Ser. B 248: 279–314.

    Article  Google Scholar 

  3. Duman, J.G. and Horwath, K. 1983. The role of hemolymph proteins in the cold tolerance of animals. Annu. Rev. Physiol. 45: 261–270.

    Article  CAS  Google Scholar 

  4. Sanders, C.J. 1991. Biology of North American spruce budworms, pp. 579–620 in Tortricid Pests, their Biology, Natural Enemies and Control, van der Geest, L.P.S. and Evenhuis, H.H. (eds.) Elsevier Science Publishers B.V., Amsterdam, the Netherlands.

    Google Scholar 

  5. Man, E.-N. and Bauce, E. 1993. Physiological changes and cold hardiness of spruce budworm larvae, Choristoneura fumiferana, during pre-diapause and diapause development under laboratory conditions. Can. Ent. 125: 1043–1053.

    Article  Google Scholar 

  6. Hew, C.L., Kao, M.H., So, Y.S., and Lim, K.P. 1983. Presence of cystine-containing antifreeze proteins in the spruce budworm, Choristoneura fumiferana. Can. J. Zool. 61: 2324–2328.

    Article  CAS  Google Scholar 

  7. Chao, H., DeLuca, C.I., and Davies, P.L. 1995. Mixing antifreeze protein types changes ice crystal morphology without affecting antifreeze activity. FEBS Lett. 357: 183–186.

    Article  CAS  Google Scholar 

  8. von Heijne, G. 1986. A new method for predicting signal sequence cleavage sites. Nucl. Acids Res. 14: 4683–4690.

    Article  CAS  Google Scholar 

  9. Graham, L.A., Liou, Y.-C., Walker, V.K., and Davies, P.L. 1997. Hyperactive antifreeze protein from beetles. Nature. In press.

  10. Wishart, D.S., Boyko, R.F., Willard, L., Richards, F.M., and Sykes, B.D. 1994. SEQSEE: A comprehensive program suite for protein sequence analysis. Comput. Appl. Biosci. 10: 121–132.

    CAS  PubMed  Google Scholar 

  11. Sönnichsen, F.D., Sykes, B.D., and Davies, P.L. 1995. Comparative modeling of the three-dimensional structure of type II antifreeze protein. Protein Sci. 4: 460–471.

    Article  Google Scholar 

  12. Jorgensen, H., Mori, M., Matsui, H., Kanaoka, M., Yanagi, H., Yabusaki, Y., and Kikuzono, Y. 1993. Molecular dynamics simulation of winter flounder antifreeze protein variants in solution: correlation between side chain spacing and ice lattice. Protein Eng. 6: 19–27.

    Article  CAS  Google Scholar 

  13. Knight, C.A., Cheng, C.C., and DeVries, A.L. 1991. Adsorption of α-helical antifreeze peptides on specific ice crystal surface planes. Biophys. J. 59: 409–418.

    Article  CAS  Google Scholar 

  14. Sicheri, F. and Yang, D.S.C. 1995. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375: 427–431.

    Article  CAS  Google Scholar 

  15. Wen, D. and Laursen, R.A. 1992. A model for binding of an antifreeze polypeptide to ice. Biophys. J. 63: 1659–1662.

    Article  CAS  Google Scholar 

  16. Chao, H., Sönnichsen, F.D., DeLuca, C.I., Sykes, B.D., and Davies, P.L. 1994. Structure-function relationship in the globular type III antifreeze protein: Identification of a cluster of surface residues required for binding to ice. Protein Sci. 3: 1760–1769.

    Article  CAS  Google Scholar 

  17. Jia, Z., DeLuca, C.I., Chao, H., and Davies, P.L. 1996. Structural basis for the binding of a globular antifreeze protein to ice. Nature 384: 285–288.

    Article  CAS  Google Scholar 

  18. Sönnichsen, F.D., DeLuca, C.I., Davies, P.L., and Sykes, B.D. 1996. Refined solution structure of Type III antifreeze protein: Hydrophobic groups may be involved in the energetics of the protein-ice interaction. Structure 4: 1325–1337.

    Article  Google Scholar 

  19. Duman, J.G., Xu, L., Neven, L.G., Tursman, D., and Wu, D.W. 1991. Hemolymph proteins involved in insect sub-zero temperature tolerance: Ice nucleator and antifreeze proteins. In Insects at Low Temperatures. Lee, R.E. and Denlinger, D.L. (eds.) Chapman and Hall, New York.

    Google Scholar 

  20. Zachariassen, K.E. 1985. Physiology of cold tolerance in insects. Physiol. Rev. 65: 779–832.

    Article  Google Scholar 

  21. Raymond, J.A., and DeVries, A.L. 1977. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci. USA 74: 2589–2593.

    Article  CAS  Google Scholar 

  22. Chakrabarty, A. and Hew, C.L. 1991. The effect of enhanced α-helicity on the activity of a winter flounder antifreeze polypeptide. Eur. J. Biochem. 202: 1057–1063.

    Article  Google Scholar 

  23. DeLuca, C.I., Chao, H., Sönnichsen, F.D., Sykes, B.D., and Davies, P.L. 1996. Effect of Type III antifreeze protein dilution and mutation on the growth inhibition of ice. Biophys. J. 71: 2346–2355.

    Article  CAS  Google Scholar 

  24. Fourney, R.M., Joshi, S.B., Kao, M.H., and Hew, C.L. 1984. Heterogeneity of antifreeze polypeptides from the Newfoundland winter flounder, Pseudopleuronectes americanus. Can. J. Zool. 62: 28–33.

    Article  CAS  Google Scholar 

  25. Li, X.M., Trinh, K.Y., Hew, C.L., Buettner, B., Baenziger, J., and Davies, P.L. 1985. Structure of an antifreeze polypeptide and its precursor from the ocean pout, Macrozoarces americanus. J. Biol. Chem. 260: 12904–12909.

    CAS  PubMed  Google Scholar 

  26. Ng, N.F., Trinh, K.Y., and Hew, C.L. 1986. Structure of an antifreeze polypeptide precursor from the sea raven, Hemitripterus americanus. J. Biol. Chem. 261: 15690–15695.

    CAS  PubMed  Google Scholar 

  27. Lane, W.S., Galat, A., Harding, M.W., and Schreiber, S.L. 1991. Complete amino acid sequence of the FK506 and rapamycin binding protein, FKBP, isolated from calf thymus. J. Prot. Chem. 10: 151–160.

    Article  CAS  Google Scholar 

  28. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyshenko, M., Doucet, D., Davies, P. et al. The antifreeze potential of the spruce budworm thermal hysteresis protein. Nat Biotechnol 15, 887–890 (1997). https://doi.org/10.1038/nbt0997-887

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0997-887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing