Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Transgenic Potato Plants Expressing Mammalian 2′–5′ Oligoadenylate Synthetase are Protected From Potato Virus X Infection Under Field Conditions

Abstract

We cloned and sequenced a rat cDNA encoding the 2′-5′ oligoadenylate synthetase, a component of the mammalian interferon-induced antiviral response, and used Agrobacterium-mediated transformation to generate transgenic potato clones expressing this mammalian enzyme. In transgenic plants infected with potato virus X and followed under field conditions, virus concentrations in leaves and in tubers were significantly lower than in nontransgenic controls. Additionally, virus concentration in the leaves of five transgenic clones and in tubers of one clone was also lower than in transgenic potatoes expressing potato virus X coat protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gadani, F., Mansky, L.M., Medici, R., Miller, W.A. and Hill, J.H. 1990. Genetic engineering of plants for virus resistance. Arch. Virol. 115: 1–21.

    Article  CAS  PubMed  Google Scholar 

  2. Beachy, R.N., Loesch-Fries, S. and Tumer, N. 1990. Coat protein-mediated resistance against virus infection. Annu. Rev. Phytopathol. 28: 451–474.

    Article  CAS  Google Scholar 

  3. Hull, R. and Davies, J.W. 1992. Approaches to nonconventional control of plant virus diseases. Crit. Rev. Plant Sci. 11: 17–33.

    Article  CAS  Google Scholar 

  4. Neijdat, A., Clark, W.G. and Beachy, R.N. 1990. Engineered resistance against plant virus diseases. Physiol. Plant. 80: 662–668.

    Article  Google Scholar 

  5. Stark, D.M. and Beachy, R.N. 1989. Protection against potyvirus infection in transgenic plants. Evidence for broad spectrum resistance. Bio/Technology 7: 1257–1262.

    Google Scholar 

  6. Ling, K., Namba, S. and Gonsalves, D. 1991. Protection against detrimental effects of potyvirus infection in transgenic tobacco plants expressing the papaya ringspot virus coat protein gene. Bio/Technology 9: 752–758.

    CAS  Google Scholar 

  7. Lengyel, P. 1982. Biochemistry of interferons and their action. Annu. Rev. Biochem. 51: 251–282.

    Article  CAS  PubMed  Google Scholar 

  8. Samuel, C.E. 1991. Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology 183: 1–11.

    Article  CAS  PubMed  Google Scholar 

  9. Nilsen, T.W., Maroney, P.A., Robertson, H.D. and Baglioni, C. 1982. Heterogeneous nuclear RNA promotes synthesis of (2′,5′)oligoadenylate and is cleaved by the (2′.5′)oligo-adenylate-activated endoribonuclease. Mol. Cell. Biol. 2: 154–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sela, I. 1981. Plant-virus interactions related to resistance and localization of viral infections. Adv. Virus Res. 26: 201–237.

    Article  CAS  PubMed  Google Scholar 

  11. Devash, Y., Hauschner, A., Sela, I. and Chakraburtty, K. 1981. The antiviral factor (AVF) from virus-infected plants induces discharge of histidnyl-TMV-RNA. Virology 111: 103–112.

    Article  CAS  PubMed  Google Scholar 

  12. Reichman, M., Devash, Y., Suhadolnik, R.J. and Sela, I. 1983. Human leukocyte interferon and the antiviral factor (AVF) from virus-infected plants stimulate plant tissues to produce nucleotides with antiviral activity. Virology 128: 240–244.

    Article  CAS  PubMed  Google Scholar 

  13. Devash, Y., Reichman, M., Sela, I., Reichenbach, N.L. and Suhadolnik, R.J. 1985. Plant oligoadenylates: enzymatic synthesis, isolation, and biological activities. Biochemistry 24: 593–599.

    Article  CAS  PubMed  Google Scholar 

  14. Devash, Y., Sela, I. and Suhadolnik, R.J. 1986. Enzymatic synthesis of plant oligo-adenylates in vitro. Meth. Enz. 119: 752–758.

    Article  CAS  Google Scholar 

  15. Devash, Y., Biggs, S. and Sela, I. 1982. Multiplication of tobacco mosaic virus in tobacco leaf disks is inhibited by (2′-5′) oligoadenylate. Science 216: 1415–1416.

    Article  CAS  PubMed  Google Scholar 

  16. Devash, Y., Gera, A., Willis, D.H., Reichman, M., Pfleiderer, W., Charubala, R., Sela, I. and Suhadolnik, R.J. 1984. 5′-dephosphorylated 2′,5′-adenylate trimer and its analogs. Inhibition of tobacco mosaic virus replication in tobacco mosaic virus-infected leaf discs, protoplasts, and intact tobacco plants. J. Biol. Chem. 259: 3482–3486.

    CAS  PubMed  Google Scholar 

  17. Devash, Y., Suhadolnik, R.J. and Sela, I. 1986. Measurement of effect of (2′-5′)-oligo-adenylates and analogs on tobacco mosaic virus replication. Meth. Enz. 119: 759–761.

    Article  CAS  Google Scholar 

  18. Sela, I., Grafi, G., Sher, N., Edelbaum, O., Yagev, H. and Gerassi, E. 1987. Resistance systems related to the N gene and their comparison with interferon. p. 109–119. In: Plant Resistance to Viruses. Ciba Foundation symposium 133. D. Evered and S. Harnett (Eds.). John Wiley & Sons, Chichester, UK.

    Google Scholar 

  19. Babosha, A.V., Trofimets, L.N. and Ladygina, M.E. 1990. Oligoadenylates and oligoadenylate synthetase of potato plants in protective reactions, against virus pathogen. Dokl. Akad. Nauk SSSR 313: 252–255 (in Russian).

    CAS  Google Scholar 

  20. Ichii, Y., Fukunaga, R., Shiojiri, S. and Sokawa, Y. 1986. Mouse 2-5A synthetase cDNA: nucleotide sequence and comparison to human 2-5A synthetase. Nucleic Acids Res. 14: 100–117.

    Article  Google Scholar 

  21. Coccia, E.M., Romeo, G., Nissim, A., Marziali, G., Albertini, R., Affabris, E., Battistini, A., Fiorucci, G., Orsatti, R., Rossi, G.B. and Chebath, J. 1990. A full-length murine 2-5A synthetase cDNA transfected in NIH-3T3 cells impairs EMCV but not VSV replication. Virology 179: 228–233.

    Article  CAS  PubMed  Google Scholar 

  22. Pearson, W.R. and Lipman, D.J. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444–2448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Helariutta, Y., Elomaa, P., Kotilainen, M., Seppanen, P. and Teeri, T.H. 1993. Cloning of cDNA coding for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in corrollas of Gerbera hybrida var. Regina (Compositae). Plant. Mol. Biol. 22: 183–193.

    Article  CAS  PubMed  Google Scholar 

  24. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  25. Beemster, A.B.R. and de Bokx, J.A. 1987. Survey of properties and symptoms, p. 84–114. In: Viruses of Potatoes and Seed-Potato Production, 2nd ed. J. A. de Bokx and J. P. H. van der Want (Eds.). Pudoc, Wageningen, Netherlands.

    Google Scholar 

  26. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.

    Article  CAS  Google Scholar 

  27. Skryabin, K.G., Kraev, A.S., Morozov, S., Yu Rozanov, M.N., Chernov, B.K., Lukasheva, L.I. and Atabekov, J.G. 1988. The nucleotide sequence of potato virus X RNA. Nucleic Acids Res. 16: 10929–10930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mehto, M. 1991. Penman X-virukselle resistentin Pito-lajikkeen aikaan-saaminen viruksen vaippaproteiinigeenin siirrolla. M.Sc. thesis, Department of Genetics, University of Oulu.

  29. Sambrook, J., Fritsch, E.T. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbour Laboratory Press, N.Y.

    Google Scholar 

  30. Huynh, T.V., Young, R.A. and Davis, R.W. 1984. Constructing and screening cDNA libraries in λgt10 and λgt11, p. 49–78. In: DNA Cloning: A Practical Approach. D. M. Glover (Ed.). IRL Press, Oxford, UK.

    Google Scholar 

  31. Feinberg, A.P. and Vogelstein, B. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6–13.

    Article  CAS  PubMed  Google Scholar 

  32. Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van Haute, E., Joos, H., Maes, M., Warren, G., Van Montagu, M. and Schell, J. 1983. Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR 322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciem. EMBO J. 2: 411–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dhaese, P., De Greve, H., Decraemer, H., Schell, J. and Van Montagu, M. 1979. Rapid mapping of transposon insertion and deletion mutations in the large Ti-plasmids of Agrobacterium tumefaciens. Nucleic Acids Res. 7: 1837–1849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jones, J.D.C., Dunsmuir, P. and Bedbrook, J. 1985. High level expression of introduced chimeric genes in regenerated transformed plants. EMBO J. 4: 2411–2418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Doyle, J.J. and Doyle, J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.

    Google Scholar 

  37. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. and Rutter, W.J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribo-nuclease. Biochemistry 18: 5294–5299.

    Article  CAS  PubMed  Google Scholar 

  38. Teeri, T., Kumar, V., Lehtovaara, P. and Knowles, J. 1987. Construction of cDNA libraries by blunt end ligation: high frequency cloning of long cDNAs from filamentous fungi. Anal. Biochem. 164: 60–67.

    Article  CAS  PubMed  Google Scholar 

  39. Gugerli, P. and Gehringer, W. 1981. Enzyme-linked immunosorbent assay (ELISA) for the detection of potato leafroll virus and potato virus Y in potato tubers after artificial break of dormancy. Pot. Res. 23: 353–359.

    Article  Google Scholar 

  40. Clark, M.F. and Adams, A.N. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for detection of plant viruses. J. Gen. Virol. 34: 475–483.

    Article  CAS  PubMed  Google Scholar 

  41. Casper, R. and Meyer, S. 1981. Die Anwendung des ELISA-Verfahrens zum Nachweis pflanzenpathogener Viren. Nachrichtenbl. Deut. Pflanzenschutzd. 33: 49–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truve, E., Aaspôllu, A., Honkanen, J. et al. Transgenic Potato Plants Expressing Mammalian 2′–5′ Oligoadenylate Synthetase are Protected From Potato Virus X Infection Under Field Conditions. Nat Biotechnol 11, 1048–1052 (1993). https://doi.org/10.1038/nbt0993-1048

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0993-1048

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing