Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

High Level, Stable Production of Recombinant Proteins in Mammalian Cell Culture using the Herpesvirus VP16 Transactivator

Abstract

We have engineered mammalian cell lines to produce high levels of heterologous proteins by constructing a cell line that expresses the herpesvirus transactivator, VP16. Subsequent stable transfection with a gene of interest under control of a herpesvirus immediate early promoter led to a rapid isolation of cell lines producing between 1 and 20 micrograms of protein/million cells/24 hours. This high level expression is stable for at least five months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kaufman, R.J. 1987. High level production of proteins in mammalian cells. p. 155–198. In: Genetic Engineering: Principles and Methods. J.K. Setlow (Ed.). Plenum Press. New York.

    Chapter  Google Scholar 

  2. Kaufman, R.J. 1992. Strategies for obtaining high level expression in mammalian cells. Technique—A Journal of Methods in Cell and Molecular Biology 2: 221–236.

    Google Scholar 

  3. MacDonald, C. 1990. Development of new cell lines for animal cell biotechnology, p. 155–178. In: Critical Reviews in Biotechnology. G.G. Stewart and I. Russell (Eds.). CRC Press, Boca Raton, Florida.

    Google Scholar 

  4. Warren, T. and Krivi, G. 1990. Strategies for production of protein in mammalian cells, p. 66–96. In: Recombinant DNA Technology and Applications. C. Ho, A. Prokop, and R. Bajpai (Eds.). McGraw-Hill, New York.

    Google Scholar 

  5. Sadowski, I., Ma, J., Triezenberg, S. and Ptashne, M. 1988. GAL4-VP16 is an unusually potent transcriptional activator. Nature 335: 563–564.

    Article  CAS  Google Scholar 

  6. Batterson, W. and Roizman, B. 1983. Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. J. Virol. 46: 371–377.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Campbell, M.E.M., Palfreyman, J.W. and Preston, C.M. 1984. Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. J Mol. Biol. 180: 1–19.

    Article  CAS  Google Scholar 

  8. O'Hare, P. and Hayward, G.S. 1985. Three trans-acting regulatory proteins of herpes simplex virus modulate immediate-early gene expression in a pathway involving positive and negative feedback. J. Virol. 56: 723–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Roberts, M.S., Boundy, A., O'Hare, P., Pizzorno, M.C., Ciufo, D.M. and Hayward, G.S. 1998. Direct correlation between a negative autoregulatory response element at the cap site of the herpes simplex virus type 1 IE 175 (alpha 4) promoter and a specific binding site for the IE 175 (ICP4) protein. J. Virol. 62: 4307–4320.

    Google Scholar 

  10. Woodley, F.W., Kelder, B., Okada, S., Harding, P. and Kopchick, J.J. 1992. Effects of introns on bGH gene expression in cultured cells. FASEB Journal 6: A1643.

    Google Scholar 

  11. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  12. Hanahan, D., Lane, D., Lipsich, L., Wigler, M. and Botchan, M. 1980. Characteristics of an S V40-plasmid recombinant and its movement into and out of the genome of a murine cell. Cell 21: 127–139.

    Article  CAS  Google Scholar 

  13. Stephens, P.E. and Hentschel, C.G. 1987. The bovine papillomavirus genome and its uses as a eukaryotic vector. Biochemical J. 248: 1–11.

    Article  CAS  Google Scholar 

  14. Kmetz, M., Ostrander, M., Schwartz, J. and Draper, K.G. 1988. MTX5: a cell line expressing biologically active HSV-1 Vmw65 000protein. Nuc. Acids Res. 16: 4735.

    Article  CAS  Google Scholar 

  15. Werstuck, G., Bilan, P. and Capone, J.P. 1990. Enhanced infectivity of herpes simplex virus type 1 viral DNA in a cell line expressing the trans-inducing factor Vmw65. J. Virol. 64: 984–991

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gill, G. and Ptashne, M. 1988. Negative effect of the transcriptional activator GAL4. Nature 334: 721–724.

    Article  CAS  Google Scholar 

  17. Thompson, C.C. and McKnight, S.L. 1992. Anatomy of an enhancer. Trends in Genetics 8: 232–236.

    Article  CAS  Google Scholar 

  18. Kaufman, R.J. 1990. Selection and co-amplification of heterologous genes in mammalian cells, p. 537–566. In: Methods in Enzymology. D.V.Goeddel (Ed.). Academic Press, Inc., San Diego, California.

    Google Scholar 

  19. Cartwright, T. 1992. Production of tPA from animal cell culture, p. 218–245. In: Animal Cell Biotechnology. R.E. Spier and J B. Griffiths (Eds.). Academic Press, London, UK.

    Google Scholar 

  20. McKillip, E.R., Giles, A.S., Levner, M.H., Hung, P.P. and Hjorth, R.N. 1991. Growth of transformed C-127 cells in bioreactors for large-scale t-PA production. Bio/Technology 9: 805–810.

    Article  CAS  Google Scholar 

  21. Danesch, U., Gloss, B., Schmid, W., Schutz, G. and Renkawitz, R. 1987. Glucocorticoid induction of the rat tryptophan oxygenase gene is mediated by two widely separated glucocorticoid-responsive elements. EMBO J. 6: 625–630.

    Article  CAS  Google Scholar 

  22. Highkin, M.K., Krivi, G.G. and Hippenmeyer, P.J. 1991. Characterization and comparison of avian and murine helper cell lines for production of replication-defective retroviruses for avian transformation. Poultry Science 70: 970–981.

    Article  CAS  Google Scholar 

  23. ApRhys, C.M.J., Ciufo, D.M., O'Neill, E.A., Kelly, T.J. and Hayward, G.S. 1989. Overlapping octamer and TAATGARAT motifs in the VF65-response elements in herpes simplex virus immediate-early promoters represent independent binding sites for cellular nuclear factor HI. J. Virol. 63: 2798–2812.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

    Article  CAS  Google Scholar 

  25. O'Hare, P. and Hayward, G.S. 1987. Comparison of upstream sequence requirements for positive and negative regulation of a herpes simplex virus immediate-early gene by three virus-encoded trans-acting factors. J. Virol. 61: 190–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ramabhadran, T.V., Reitz, B.A. and Shah, D.M. 1985. High-level expression of the bovine growth hormone gene in heterologous mammalian cells. Gene 38: 111–118.

    Article  CAS  Google Scholar 

  27. Jolley, M.E., Wang, C.-H.J., Ekenberg, S.J., Zuelke, M.S. and Kelso, D.M. 1984. Particle concentration fluorescence immunoassay (PCFIA): A new, rapid immunoassay technique with high sensitivity. J. Immuno. Meth. 67: 21–35.

    Article  CAS  Google Scholar 

  28. Chonczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159.

    Google Scholar 

  29. Kost, T.A., Theodorakis, N. and Hughes, S.H. 1983. The nucleotide sequence of the chick cytoplasmic beta-actin gene. Nuc. Acids Res. 11: 8287–8301.

    Article  CAS  Google Scholar 

  30. Hamer, D.H. and Walling, M. 1982. Regulation in vivo of a cloned mammalian gene: Cadmium induces the transcription of a mouse metallothionein gene in SV40 vectors. J. Molec. Appl. Gen. 1: 273–288.

    CAS  Google Scholar 

  31. Wigler, M., Sweet, R., Sim, F.K., Wold, B., Pellicer, A., Lacy, E., Maniatis, T., Silverstein, S. and Axel, R. 1979. Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell 16: 777–785.

    Article  CAS  Google Scholar 

  32. Urlaub, G. and Chasin, L.A. 1980. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc. Natl. Acad. Sci. USA 77: 4216–4220.

    Article  CAS  Google Scholar 

  33. Subramani, S., Mulligan, R. and Berg, P. 1981. Expression of the mouse dihydrofolate reductase complementary deoxyribonucleic acid in simian virus 40 vectors. Mol. Cell. Biol. 1: 854–864.

    Article  CAS  Google Scholar 

  34. Meinkoth, J. and Wahl, G. 1984. Hybridization of nucleic acids immobilized on solid supports. Anal. Biochem. 138: 267–284.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hippenmeyer, P., Highkin, M. High Level, Stable Production of Recombinant Proteins in Mammalian Cell Culture using the Herpesvirus VP16 Transactivator. Nat Biotechnol 11, 1037–1041 (1993). https://doi.org/10.1038/nbt0993-1037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0993-1037

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing