Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Direct Somatic Embryogenesis in Peanut (Arachis Hypogea)

Abstract

We have regenerated plants of Arachis hypogea cultivar SB-11 from immature zygotic embryo axis via direct somatic embryogenesis without an intermediate callus stage. Induction and maturation of the somatic embryos was achieved on the same medium. 2,4-dichlorophenoxy acetic acid (2,4-D) was essential for this response. Both the size of the immature zygotic embryo axis and the concentration of 2,4-D were important for direct somatic embryogenesis. Embryos germinated in hormone free medium, and plants survived in a sand:soil mixture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thorpe, T.A. and Biondi, S. 1984. Conifers, p. 435–470. In: Handbook of plant cell tissue culture. Vol. 2. Sharp W. R., Evans D. A., Ammirato P. V., Yamada Y. (Eds). Macmillian, New York, London.

    Google Scholar 

  2. Mantell, S.H., Matthews, J.A. and Mckee, R.A. 1985. Rapid clonal propagation, p. 130–157. In: Principles of Plant Biotechnology: An Introduction to Genetic Engineering in Plants. Blackwell Scientific Publications, London.

    Google Scholar 

  3. Steward, F.C., Mapes, M.O. and Mears, K. 1958. Growth and organised development of cultured cells. II. Organisation and cultures grown from freely suspended cells. J. Bot. 45:705–708.

    Article  Google Scholar 

  4. Williams, E.G. and Maheswaran, G. 1986. Somatic embryogenesis: Factors influencing coordinated behaviour of cells as a embryogenic group. Ann. Bot. 57:443–462.

    Article  Google Scholar 

  5. Larkin, P.J. and Scowcroft, W.R. 1981. Somaclonal variation—A novel source of variability from cultures for plant improvement. Theor. Appl. Genet. 60:197–214.

    Article  CAS  Google Scholar 

  6. Maheswaran, G. and Williams, E.G. 1984. Direct somatic embryoid formation on immature embryos of Trifolium repens, T. pratense and Medicago saliva and rapid clonal propagation of T. repens. Ann. Bot. 54:201–211.

    Article  Google Scholar 

  7. Maheswaran, G. and Williams, E.G. 1985. Origin and development of somatic embryos formed directly on immature embryos of Trifolium repens in vitro. Ann. Bot. 56:619–630.

    Article  Google Scholar 

  8. Finer, J.J. 1988. Apical proliferation of embryogenic tissue of soybean (Glycine max (L) Merill) Plant Cell Rep. 7:238–241.

    Article  CAS  Google Scholar 

  9. Maheswaran, G. and Williams, E.G. 1986. Direct secondary somatic embryogenesis from immature sexual embryos of Trifolium repens cultured in vitro. Ann. Bot. 57:109–117.

    Google Scholar 

  10. Trigiano, R.N., Beaty, R.M. and Graham, E.T. 1988. Somatic embryogenesis from immature embryos of redbud Cercis canadensis. Plant Cell Rep. 7:148–150.

    Article  CAS  Google Scholar 

  11. Gharyal, P.K. and Maheshwari, S.C. 1981. In vitro differentiation of somatic embryos in a leguminous tree—Albizzia lebbeck L. Naturwis-senschaften 68:379–380.

    Article  Google Scholar 

  12. Mroginiski, L.A., Kartha, K.K. and Shyluk, J.P. 1981. Regeneration of peanut plantlets by in vitro culture of immature leaves. Can. J. Bot. 59:826–830.

    Article  Google Scholar 

  13. Bajaj, Y.P.S., Kumar, P., Labana, K.S. and Singh, M.M. 1981. Regeneration of plants from seedling explains and callus cultures of Arachis hypogea. Ind. J. Exp. Biol. 19:1026.

    Google Scholar 

  14. Shyluk, J.P., Kartha, K.K. and Mroginiski, L.A. 1981. Plant regeneration from meristems of grain legumes cowpea, chickpea, peanut. Can. J. Bot. 59:1671–1679.

    Article  Google Scholar 

  15. Narasimhulu, S.B. and Reddy, G.M. 1983. Plantlet regeneration from different callus cultures of Arachis hypogea. Plant Sci. Lett. 31:157–163.

    Article  CAS  Google Scholar 

  16. Atreya, C.D., Papa Rao, J. and Subramanyan, N.C. 1984. In vitro regeneration of peanut (Arachis hypogea) plantlets from embryo axis and cotyledon segments. Plant. Sci. Lett. 34:379–383.

    Article  Google Scholar 

  17. Bhatia, C.R., Murthy, G.S. and Mathews, V.M. 1985. Regeneration of plants from deembryonated peanut cotyledons cultured without nutrients and agar. Z. Pflanzenzuchtg. 94:149–155.

    Google Scholar 

  18. Ilahi, I. and Ameen, S. 1986. Studies on in vitro culture of Arachis hypogea hypocotyl explants. Pak. J. Bot. 18:21–28.

    CAS  Google Scholar 

  19. Raghavan, V. and Srivastava, P.V. 1982. Embryo culture, p. 195–222. In: Experimental Embryology of Vascular Plants. John B. M. (Ed.) Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  20. Vasil, I.K. 1982. Plant Cell Culture and Somatic Cell Genetics of Cereals and Grasses, p. 179–203. In: Plant Improvement and Somatic Cell Genetics. Vasil I. K., Scowcroft W. R. and Frey K.J. (Eds.) Academic Press, New York.

    Chapter  Google Scholar 

  21. Sharp, W.R., Evans, D.A. and Sondahl, M.R. 1982. Application of somatic embryogenesis to crop improvement in plant tissue culture, p. 759–762. In: Proceedings of the 5th International Congress of Plant Tissue and Cell Culture, Japan. Fujiwara A. (Ed.) Maruzen. Tokyo.

    Google Scholar 

  22. Peerbolte, R. 1988. Somaclonal variation reverses genetic engineering. Agricell Rep. 10:6.

    Google Scholar 

  23. Wernicke, W. and Brettell, R. 1980. Somatic embryogenesis from Sorghum tricolor leaves. Nature. 287:138–139.

    Article  Google Scholar 

  24. Lu, C.Y. and Vasil, I.K. 1982. Somatic embryogenesis and plant regeneration in tissue culture of Panicum maximum Am. J. Bot. 69:77–81.

    Article  Google Scholar 

  25. Conger, B.V., Manning, G.E., Grey, D.J. and MacDaniel, J.K. 1983. Direct embryogenesis from mesophyll cells of orchard grass. Science 221:850–851.

    Article  CAS  Google Scholar 

  26. Wang, D., Wergin, W.P. and Zimmerman, R.H. 1984. Somatic embryogenesis and plant regeneration from immature embryos of strawberry. Hort. Sci. 19:71–72.

    Google Scholar 

  27. Ammirato, P.V. 1983. Embryogenesis, p. 82–113. In: Handbook of Plant Cell Culture. Vol. I. Evans D. A., Sharp W. R., Ammirato, P. V., and Yamada Y. (Eds.) Macmillian, New York.

    Google Scholar 

  28. Kysley, W., Myers, J.R., Lazzeri, A., Collins, G.B. and Jacobson, H.J. 1987. Plant regeneration via somatic embryogenesis in pea (Pisum sativum L.) Plant Cell Rep. 6:305–308.

    Article  Google Scholar 

  29. Nagarajan, P., McKenzie, J.S. and Walton, P.D. 1986. Embryogenesis and plant regeneration of Medicago species in tissue culture. Plant Cell Rep. 5:77–80.

    Article  CAS  Google Scholar 

  30. Li, B.J., Langridge, W.H.R. and Szalay, A.A. 1985. Somatic embryogenesis and plantlet regeneration in soybean. (Glycine max.) Plant Cell Rep. 4:344–347.

    Article  CAS  Google Scholar 

  31. Litz, R.E., Knight, R.J. Jr., and Gazit, S. 1984. In vitro somatic embryogenesis from Mangifera indica L. callus. Sci. Horticul. 22:233–240.

    Article  Google Scholar 

  32. Nomura, K. and Komamine, A. 1985. Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture. Plant Physiol. 79:988–991.

    Article  CAS  Google Scholar 

  33. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazra, S., Sathaye, S. & Mascarenhas, A. Direct Somatic Embryogenesis in Peanut (Arachis Hypogea). Nat Biotechnol 7, 949–951 (1989). https://doi.org/10.1038/nbt0989-949

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0989-949

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing