Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Polymemse Chain Reaction Using Mixed Primers: Cloning of Human Monoclonal Antibody Variable Region Genes from Single Hybridoma Cells

Abstract

We describe a general approach to rapidly obtain the DNA sequence encoding the variable region of any immunoglobulin chain using the polymerase chain reaction and a mixture of upstream primers corresponding to the leader sequence, and one downstream primer designed from the conserved nucleotide sequence of the constant region. The approach was applied to five different hybridomas producing human monoclonal antibodies and variable regions for both γ and μ heavy chain and κ and λ light chain genes were successfully cloned. cDNA encoding variable regions could be amplified from single hybridoma cells isolated by micromanipulation. This approach will permit analysis of B cell clonal ontogeny, antibody diversity and lymphoma cell progression and heterogeneity. It will also facilitate structural and functional studies of immunoglobulins as well as the rapid construction of chimeric antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Borrebaeck, C.A.K., Danielsson, L., and Möller, S.A. 1988. Human monoclonal antibodies produced by primary in vitro immunization of peripheral blood lymphocytes. Proc. Nad. Acad. Sci. U.S.A. 85:3995–3999.

    Article  CAS  Google Scholar 

  2. Borrebaeck, C.A.K. 1988. Human mAbs produced by primary in vitro immunization. Immunol. Today 9:355–359.

    Article  CAS  Google Scholar 

  3. Larrick, J.W. 1989. Antibody inhibition of the immunoflammatory cascade. J. Grit. Care In Press.

  4. Larrick, J.W., and Bourla, J.M. 1986. Prospects for the therapeutic use of human monoclonal antibodies. J. Biol. Resp. Mod. 5:379–387.

    CAS  Google Scholar 

  5. Morrison, S.L., Johnson, M.J., Hertzenberg, L.A., and Oi, V.T. 1984. Chimeric human antibody molecules: mouse antigen-binding domains with human constant regions domains. Proc. Nad. Acad. Sci. U.S.A. 81:6851–6855.

    Article  CAS  Google Scholar 

  6. Riechmann, L., Clark, M., Waldmann, H., and Winter, G. 1988. Reshaping human antibodies for therapy. Nature 332:323–327.

    Article  CAS  Google Scholar 

  7. Shawler, D.L., Bartholomew, R.M., Smith, L.M., and Dillman, R.D. 1985. Human immune response to multiple injections of murine monoclonal IgG. J. Immunol. 135:1530–1535.

    CAS  PubMed  Google Scholar 

  8. Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S., and Winter, G. 1986. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525.

    Article  CAS  Google Scholar 

  9. Verhoeyen, M., Milstein, C., and Winter, G. 1988. Reshaping human antibodies: Grafting an antilysozyme activity. Science 239:1534–1536.

    Article  CAS  Google Scholar 

  10. Brown, B.A., Davis, G.L., Saltzgaber-Miiller, J., Simon, P., Ho, M.-K., Shaw, P.S., Stone, B.A., Sands, H., and Moore, G.P. 1987. Tumor-specific genetically engineered murine/human chimeric monoclonal antibody. Cancer Res. 47:3577–3585.

    CAS  PubMed  Google Scholar 

  11. Liu, A.Y., Robinson, R.R, Hellström, K.E., Murrey, E.D. Jr., Chang, C.P., and Hellström, I. 1987. Chimeric mouse-human IgGl antibody that can mediate lysis of cancer cells. Proc. Nad. Acad. Sci. U.S.A. 84:3439–3444.

    Article  CAS  Google Scholar 

  12. Morrison, S.L., Canfield, S., Porter, S., Tan, L.K., Tao, M., and Wims, L.A. 1988. Production and characterization of genetically engineered antibody molecules. Clin. Chem. 34:1668–1675.

    CAS  PubMed  Google Scholar 

  13. Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., and Arnheim, N. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354.

    Article  CAS  Google Scholar 

  14. Scharf, S.J., Horn, G.T., and Erlich, H.A. 1986. Direct cloning and sequence analysis of enzymatically amplified genomic sequences. Science 233:1076–1079.

    Article  CAS  Google Scholar 

  15. Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharff, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., and Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–492.

    Article  CAS  Google Scholar 

  16. Larrick, J.W., Chiang, Y.L., Sheng-Dong, R., Senyk, G., and Casali, P. 1988. In: In Vitro Immunization in Hybridoma Technology, Progress in Biotechnology 5 (C. A. K. Borrebaeck, Ed.), pp.231—246. Elsevier, Amsterdam.

    Google Scholar 

  17. Rabat, E.A., Wu, T.T., Reid-Miller, M., Perry, H.M., and Gottes-man, K.S. 1987. Sequences of Protein of Immunological Interest, 4th ed. U.S. Dept. Health and Human Services.

    Google Scholar 

  18. Dunning, A.M., Talmud, P., and Humphries, S.E. 1988. Errors in the polymerase chain reaction. Nucl. Acids Res. 16:10393.

    Article  CAS  Google Scholar 

  19. Loh, E., Elliott, J.F., Cwirla, S., Lanier, L.L., and Davis, M.M. 1989. Polymerase chain reaction with single-sided specificity: Analysis of T cell receptor δ chain. Science 243:217–220.

    Article  CAS  Google Scholar 

  20. von Heijne, G. 1985. Signal sequences: The limits of variation. J. Mol. Biol. 184:99–105.

    Article  CAS  Google Scholar 

  21. Larrick, J.W., Danielsson, L., Brenner, C., Abrahamson, M., Fry, K., and Borrebaeck, C.A.K. 1989. Rapid cloning of rearranged immuno-globulin genes from human hybridoma cells using mixed primers and the polymerase chain reaction. Biochem. Biophys. Res. Commun. 160:1250–1256.

    Article  CAS  Google Scholar 

  22. Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Trela, M., Sklar, J., and Levy, R. 1986. Clustering of extensive somatic mutations in the variable region of an immunoglobulin heavy chain gene from a human B cell lymphoma. Cell 44:97–104.

    Article  CAS  Google Scholar 

  23. Banapor, B., Rosenthal, K., Rabin, L., Sharma, V., Young, L., Fernan-dez, J., Engleman, E., McGrath, M., Reyes, G., and Lifson, J. 1987. Production, characterization, and epitope mapping of a human monoclonal antibody to the envelope glycoprotein of HIV. J. Immunol. 139:4027–4036.

    Google Scholar 

  24. Rappolee, D.A., Brenner, C.A., Schultz, R., Mark, D., and Werb, Z. 1988. Developmental expression of PDGF, TGF-alpha, and TGF-beta genes in preimplantation mouse embryo. Science 241:1823–1825.

    Article  CAS  Google Scholar 

  25. Messing, J., Groneborn, B., Muller-Hill, B., and Hofschneider, P.H. 1977. Filamentous coliphage M13 as a cloning vehicle: Insertion of a Hindi 11 fragment of the lac regulatory region in M13 replicative form in vitro. Proc. Natl. Acad. Sci. U.S.A. 74:3642–3647.

    Article  CAS  Google Scholar 

  26. Vieira, J., and Messing, J. 1982. The pUC plasmids, a M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–264.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larrick, J., Danielsson, L., Brenner, C. et al. Polymemse Chain Reaction Using Mixed Primers: Cloning of Human Monoclonal Antibody Variable Region Genes from Single Hybridoma Cells. Nat Biotechnol 7, 934–938 (1989). https://doi.org/10.1038/nbt0989-934

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0989-934

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing