Review Article | Published:

Homologies in the Structures of G-Binding Proteins: An Analysis Based on Elongation Factor EF-TU

Bio/Technology volume 7, pages 913920 (1989) | Download Citation

Subjects

Abstract

The defining property of G binding proteins is their ability to bind guanine nucleotides, and in this review we shall concentrate upon the domain or subunit responsible for carrying out this function. A common function of such a general nature, exercised in so many different biological organisms and biochemical contexts, does not automatically imply a high, or even a detectable, degree of homology among the proteins that proffer it. The G-proteins provide a spectrum of degrees of kinship that range from the intimate to the unrecognisable. Satisfyingly, this spectrum correlates largely with similarity of function, at least within the general classes of G-proteins. Nevertheless, among these classes it remains a matter for conjecture whether the difference between just detectable homology and no detectable homology, significant as it may be in the statistical sense, is significant in the subjective sense of “telling us anything about evolution.”

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , and 1989. Structural homologies in G-binding proteins. In: Annual Smith, Kline and French Research Symposium “Protein Design and the Development of New Therapeutics and Vaccines”.

  2. 2.

    1980. The elongation step of protein biosynthesis. Trends Biochem. Sci. 5:207–210.

  3. 3.

    , , and 1985. Structural details of the binding of guanosine diphosphate to elongation factor Tu from E.coli as studied by X-ray crystallography. EMBO J. 4:2385–2388.

  4. 4.

    1985. Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins. Science 230:32–36.

  5. 5.

    and 1989. New structural data on elongation factor-Tu: GDP based on X-ray crystallography. In: The Guanine-Nucleotide Binding Proteins. Common Structural and Functional Properties EMBO/NATO/CEC Adv. Res. Workshop, Renesse, The Netherlands, Aug. 1988. L. Bosch, B. Kraal and A. Parmeggiani (Eds.). Plenum Press, NY.

  6. 6.

    , , , , , and 1987. Properties of a genetically engineered G domain of elongation factor Tu. Proc. Natl. Acad. Sci. USA 84:3141–3145.

  7. 7.

    and 1987. A mutation that alters the nucleotide specificity of elongation factor Tu, a GTP-regulatory protein. J. Biol. Chem. 262:13081–13085.

  8. 8.

    , and 1987. GTP-binding domain: Three consensus sequence elements with distinct spacing. Proc. Nad. Acad. Sci. USA 84:1814–1818.

  9. 9.

    1987. rasGenes. Ann. Rev. Biochem. 56:779–827.

  10. 10.

    , , , , , , , , and 1988. Three-dimensional structure of an oncogene protein: Catalytic domain of human c-H-ras p21. Science 239:888–891.

  11. 11.

    , , , , and 1985. A model for the tertiary structure of p21, the product of the ras oncogene. Science 230:78–82.

  12. 12.

    1988. The three-dimensional structure of c-H-ras p21: Implications for oncogene and G protein studies. Trends Biocnem.Sci. 13:195–198.

  13. 13.

    , , , , , , , and 1989. Structural differences between a as oncogene protein and the normal protein. Nature 337:90–93.

  14. 14.

    and 1988. Structure-function relationships in the GTP binding domain of EF-Tu: Mutation of Val20, the residue homologous to position 12 in p21. EMBO J. 7:2861–2867.

  15. 15.

    , , , and 1989. Structure-function relationships of elongation factor Tu.Isolation and activity of the guanine nucleotide binding domain. Eur. J. Biochem. In press.

  16. 16.

    1984. Regional homology in GTP-binding proto-oncogene products and elongation factors. J. Cyclic Nucleotide Prot. Phosphoryl. Res. 9:435–448.

  17. 17.

    and 1984. Homologies in the primary structure of GTP-binding proteins: The nucleotide-binding site of EF-Tu and p21. EMBO J. 3:339–341.

  18. 18.

    and 1985. Phosphate-binding sequences in nucleotide-binding proteins. FEBS Lett. 186:1–7.

  19. 19.

    and 1989. The GTP-binding domain revisited, In: The Guanine-Nucleotide binding Proteins.Common Structural and Functional Properties. EMBO/NATO/CEC Adv.Res. Workshop, Renesse, The Netherlands, Aug. 1988. L. Bosch, B. Kraal and A. Parmeggiani (Eds.). Plenum Press, NY.

  20. 20.

    , , , , , , , , , , , and 1987. The protein synthesis initiation factor 2 G-domain. Study of a functionally active C-terminal 65-kilodalton fragment of IF2 from Escherichia coli Biochem. 26:5070–5076.

  21. 21.

    and 1985. GTP-binding membrane protein of scherichia coliwith sequence homology to initiation factor 2 and elongation factors Tu and G. Proc. Natl. Acad. Sci. USA 82:7500–7504.

  22. 22.

    , , , , , , , , and 1985. In yeast, rasproteins are controlling elements of adenylate cyclase. Cell 40:27–36.

  23. 23.

    , , and 1987. The ras-related yptprotein is a ubiquitous eucaryotic protein: Isolation and sequence analysis of mouse cDNA clones highly homologous to the yeast YPT1gene. EMBO J. 6:4049–4053.

  24. 24.

    and 1986. The ralgene: A new rasrelated gene isolated by the use of a synthetic probe. EMBO J. 5:2203–2208.

  25. 25.

    1987. G proteins: Transducers of receptor-generated signals. Ann. Rev. Biochem. 56:615–649.

  26. 26.

    1987. G-proteins: Research unravels their role in cell communication. Chem. Eng. News., Dec.21:26–39.

  27. 27.

    , and 1985. Tubulin domains probed by limited proteolysis and subunit-specific antibodies. J. Mol. Biol. 185:311–327.

  28. 28.

    , and 1978. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120:97–120.

  29. 29.

    , , , , , , and 1988. Protein secondary structure and homology by neural networks: The α-helices in rhodopsin. FEBS Lett. 241:223–228.

  30. 30.

    , and 1986. Family of G protein α chains: Amphipathic analysis and predicted structure of functional domains. Prot. Eng. 1:47–54.

  31. 31.

    , , , , , , and 1987. HIV F/3′ orfencodes a phosphorylated GTP-binding protein resembling an oncogene product. Nature 330:266–269.

Download references

Author information

Affiliations

  1. Division of Biostructural Chemistry, Department of Chemistry, Aarhus University, 8000 Århus C, Denmark.

    • Paul Woolley
    •  & Brian F. C. Clark

Authors

  1. Search for Paul Woolley in:

  2. Search for Brian F. C. Clark in:

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nbt0989-913

Further reading