Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Homologies in the Structures of G-Binding Proteins: An Analysis Based on Elongation Factor EF-TU

Abstract

The defining property of G binding proteins is their ability to bind guanine nucleotides, and in this review we shall concentrate upon the domain or subunit responsible for carrying out this function. A common function of such a general nature, exercised in so many different biological organisms and biochemical contexts, does not automatically imply a high, or even a detectable, degree of homology among the proteins that proffer it. The G-proteins provide a spectrum of degrees of kinship that range from the intimate to the unrecognisable. Satisfyingly, this spectrum correlates largely with similarity of function, at least within the general classes of G-proteins. Nevertheless, among these classes it remains a matter for conjecture whether the difference between just detectable homology and no detectable homology, significant as it may be in the statistical sense, is significant in the subjective sense of “telling us anything about evolution.”

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Clark, B.F.C., Jensen, M., Kjeldgård and Thirup, S. 1989. Structural homologies in G-binding proteins. In: Annual Smith, Kline and French Research Symposium “Protein Design and the Development of New Therapeutics and Vaccines”.

    Google Scholar 

  2. Clark, B. 1980. The elongation step of protein biosynthesis. Trends Biochem. Sci. 5:207–210.

    Article  CAS  Google Scholar 

  3. la Cour, T.F.M., Nyborg, J., Thirup, S. and Clark, B.F.C. 1985. Structural details of the binding of guanosine diphosphate to elongation factor Tu from E.coli as studied by X-ray crystallography. EMBO J. 4:2385–2388.

    Article  CAS  Google Scholar 

  4. Jurnak, F. 1985. Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins. Science 230:32–36.

    Article  CAS  Google Scholar 

  5. Nyborg, J. and la Cour, T.F.M. 1989. New structural data on elongation factor-Tu: GDP based on X-ray crystallography. In: The Guanine-Nucleotide Binding Proteins. Common Structural and Functional Properties EMBO/NATO/CEC Adv. Res. Workshop, Renesse, The Netherlands, Aug. 1988. L. Bosch, B. Kraal and A. Parmeggiani (Eds.). Plenum Press, NY.

    Google Scholar 

  6. Parmeggiani, A, Swart, G.W.M., Mortensen, K.K., Jensen, M., Clark, B.F.C., Dente, L. and Cortese, R. 1987. Properties of a genetically engineered G domain of elongation factor Tu. Proc. Natl. Acad. Sci. USA 84:3141–3145.

    Article  CAS  Google Scholar 

  7. Hwang, Y.-W. and Miller, D.L. 1987. A mutation that alters the nucleotide specificity of elongation factor Tu, a GTP-regulatory protein. J. Biol. Chem. 262:13081–13085.

    CAS  PubMed  Google Scholar 

  8. Dever, T.E., Glynias, M.J. and Merrick, W.C. 1987. GTP-binding domain: Three consensus sequence elements with distinct spacing. Proc. Nad. Acad. Sci. USA 84:1814–1818.

    Article  CAS  Google Scholar 

  9. Barbacid, M. 1987. rasGenes. Ann. Rev. Biochem. 56:779–827.

    Article  CAS  Google Scholar 

  10. de Vos, A.M., Tong, L., Milburn, M.V., Matias, P.M., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E. and Kim, S.-H. 1988. Three-dimensional structure of an oncogene protein: Catalytic domain of human c-H-ras p21. Science 239:888–891.

    Article  CAS  Google Scholar 

  11. McCormick, F., Clark, B.F.C., la Cour, T.F.M., Kjeldgaard, M., Nørskov-Lauritsen, L. and Nyborg, J. 1985. A model for the tertiary structure of p21, the product of the ras oncogene. Science 230:78–82.

    Article  CAS  Google Scholar 

  12. Jurnak, F.A. 1988. The three-dimensional structure of c-H-ras p21: Implications for oncogene and G protein studies. Trends Biocnem.Sci. 13:195–198.

    Article  CAS  Google Scholar 

  13. Tong, L., de Vos, A.M., Milburn, M.V., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E. and Kim, S.-H. 1989. Structural differences between a as oncogene protein and the normal protein. Nature 337:90–93.

    Article  CAS  Google Scholar 

  14. Jacquet, E. and Parmeggiani, A. 1988. Structure-function relationships in the GTP binding domain of EF-Tu: Mutation of Val20, the residue homologous to position 12 in p21. EMBO J. 7:2861–2867.

    Article  CAS  Google Scholar 

  15. Jensen, M., Cool, R.H., Mortensen, K.K., Clark, B.F.C. and Parmeggiani, A. 1989. Structure-function relationships of elongation factor Tu.Isolation and activity of the guanine nucleotide binding domain. Eur. J. Biochem. In press.

  16. Halliday, K.R. 1984. Regional homology in GTP-binding proto-oncogene products and elongation factors. J. Cyclic Nucleotide Prot. Phosphoryl. Res. 9:435–448.

    CAS  Google Scholar 

  17. Leberman, R. and Egner, U. 1984. Homologies in the primary structure of GTP-binding proteins: The nucleotide-binding site of EF-Tu and p21. EMBO J. 3:339–341.

    Article  CAS  Google Scholar 

  18. Möller, W. and Amons, R. 1985. Phosphate-binding sequences in nucleotide-binding proteins. FEBS Lett. 186:1–7.

    Article  Google Scholar 

  19. Dever, T.E. and Merrick, W.C. 1989. The GTP-binding domain revisited, In: The Guanine-Nucleotide binding Proteins.Common Structural and Functional Properties. EMBO/NATO/CEC Adv.Res. Workshop, Renesse, The Netherlands, Aug. 1988. L. Bosch, B. Kraal and A. Parmeggiani (Eds.). Plenum Press, NY.

    Google Scholar 

  20. Cenatiempo, Y., Deville, F., Dondon, J., Grunberg-Manago, M., Sacer-dot, C., Hershey, J.W.B., Hansen, H.F., Petersen, H.U., Clark, B.F.C., Kjeldgaard, M., la Cour, T.F.M., Mortensen, K.K. and Nyborg, J. 1987. The protein synthesis initiation factor 2 G-domain. Study of a functionally active C-terminal 65-kilodalton fragment of IF2 from Escherichia coli Biochem. 26:5070–5076.

    Article  CAS  Google Scholar 

  21. March, P.E. and Inouye, M. 1985. GTP-binding membrane protein of scherichia coliwith sequence homology to initiation factor 2 and elongation factors Tu and G. Proc. Natl. Acad. Sci. USA 82:7500–7504.

    Article  CAS  Google Scholar 

  22. Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., Cameron, S., Broach, J., Matsumoto, K. and Wigler, M. 1985. In yeast, rasproteins are controlling elements of adenylate cyclase. Cell 40:27–36.

    Article  CAS  Google Scholar 

  23. Haubruck, H., Disela, C., Wagner, P. and Gallwitz, D. 1987. The ras-related yptprotein is a ubiquitous eucaryotic protein: Isolation and sequence analysis of mouse cDNA clones highly homologous to the yeast YPT1gene. EMBO J. 6:4049–4053.

    Article  CAS  Google Scholar 

  24. Chardin, P. and Tavitian, A. 1986. The ralgene: A new rasrelated gene isolated by the use of a synthetic probe. EMBO J. 5:2203–2208.

    Article  CAS  Google Scholar 

  25. Gilman, A.G. 1987. G proteins: Transducers of receptor-generated signals. Ann. Rev. Biochem. 56:615–649.

    Article  CAS  Google Scholar 

  26. Rawis, R.L. 1987. G-proteins: Research unravels their role in cell communication. Chem. Eng. News., Dec.21:26–39.

    Google Scholar 

  27. Mandelkow, E.-M., Hermann, M. and Rühl, U. 1985. Tubulin domains probed by limited proteolysis and subunit-specific antibodies. J. Mol. Biol. 185:311–327.

    Article  CAS  Google Scholar 

  28. Gamier, J., Osguthorpe, D.J. and Robson, B. 1978. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120:97–120.

    Article  Google Scholar 

  29. Bohr, H., Bohr, J., Brunak, S., Cotterill, R.M.J., Lautrup, B., Nørskov, L., Olesen, O. and Petersen, S.B. 1988. Protein secondary structure and homology by neural networks: The α-helices in rhodopsin. FEBS Lett. 241:223–228.

    Article  CAS  Google Scholar 

  30. Masters, S.B., Stroud, R.M. and Bourne, H.R. 1986. Family of G protein α chains: Amphipathic analysis and predicted structure of functional domains. Prot. Eng. 1:47–54.

    Article  CAS  Google Scholar 

  31. Guy, B., Kieny, M.P., Riviere, Y., Le Peuch, C., Dott, K., Girard, M., Montagnier, L. and Lecocq, J.-P. 1987. HIV F/3′ orfencodes a phosphorylated GTP-binding protein resembling an oncogene product. Nature 330:266–269.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woolley, P., Clark, B. Homologies in the Structures of G-Binding Proteins: An Analysis Based on Elongation Factor EF-TU. Nat Biotechnol 7, 913–920 (1989). https://doi.org/10.1038/nbt0989-913

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0989-913

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing