Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Evolution of a cytokine using DNA family shuffling

Abstract

DNA shuffling of a family of over 20 human interferon-α (Hu-IFN-α) genes was used to derive variants with increased antiviral and antiproliferation activities in murine cells. A clone with 135,000-fold improved specific activity over Hu-IFN-α2a was obtained in the first cycle of shuffling. After a second cycle of selective shuffling, the most active clone was improved 285,000-fold relative to Hu-IFN-α2a and 185-fold relative to Hu-IFN-α1. Remarkably, the three most active clones were more active than the native murine IFN-αs. These chimeras are derived from up to five parental genes but contained no random point mutations. These results demonstrate that diverse cytokine gene families can be used as starting material to rapidly evolve cytokines that are more active, or have superior selectivity profiles, than native cytokine genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequences and genealogies of shuffled interferons.
Figure 2: Antiviral activities of native IFN-αs and an evolved IFN-α.
Figure 3: Summary of antiviral activities of native and evolved IFN-αs on murine L929 cells.
Figure 4: Structural modeling of IFN-CH2.2.

Similar content being viewed by others

References

  1. Sprang, S.R. & Bazan, J.F. Cytokine structural taxonomy and mechanisms of receptor engagement. Curr. Opin. Struct. Biol. 3, 815–827 (1993).

    Article  CAS  Google Scholar 

  2. Dusheiko, G. Side effects of alpha interferon in chronic hepatitis C. Hepatology 26, 112S–121S (1997).

    Article  CAS  Google Scholar 

  3. Vial, T. & Descotes, J. Clinical toxicity of the interferons. Drug Experience 10, 115–150 (1994).

    CAS  Google Scholar 

  4. Funke, I. et al. Capillary leak syndrome associated with elevated IL-2 serum levels after allogeneic bone marrow transplantation. Ann. Hematol. 68, 49–52 (1994).

    Article  CAS  Google Scholar 

  5. Schomburg, A., Kirchner, H. & Atzpodien, J. Renal, metabolic and hemodynamic side-effects of interleukin-2 and /or interferon alpha: evidence of a risk /benefit advantange of subcutaneous thereapy. J. Cancer Res. Clin. Oncol. 119, 745–755 (1993).

    Article  CAS  Google Scholar 

  6. Henco, K. et al. Structural relationship of human interferon alpha genes and pseudogenes. J. Mol. Biol. 185, 227–260 (1985).

    Article  CAS  Google Scholar 

  7. Horisberger, M.A. & Di Marco, S. Interferon-alpha hybrids. Pharmacol. Ther. 66, 507–534 (1995).

    Article  CAS  Google Scholar 

  8. Blatt, L.M., Davis, J.M., Klein, S.B. & Taylor, M.W. The biologic activity and molecular characterization of a novel synthetic interferon-alpha species, consensus interferon. J. Interferon Cytokine Res. 16, 489–499 (1996).

    Article  CAS  Google Scholar 

  9. Stemmer, W.P.C. Searching sequence space. Biotechnology 13, 549–555 (1995).

    CAS  Google Scholar 

  10. Patten, P.A., Howard, R.H. & Stemmer, W.P.C. Applications of DNA shuffling to pharmaceuticals and vaccines. Curr. Opin. Biotechnol. 8, 724–733 (1996).

    Article  Google Scholar 

  11. Crameri, A., Raillard, S.A., Bermudez, E. & Stemme, R.W.P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 15, 288–291 (1998).

    Article  Google Scholar 

  12. Uze, G., Lutfalla, G. & Mogensen, K.E. Alpha and beta interferons and their receptor and their friends and relations. J. Interferon Cytokine Res. 15, 3–26 (1995).

    Article  CAS  Google Scholar 

  13. Burbank, L. in Luther Burbank, his methods and discoveries: their practical application Vol. 1 (eds Whitson, J. & Williams, R.J.H.S.) 176–210 (Luther Burbank Press, New York; 1914).

    Book  Google Scholar 

  14. Haldane, J.B.S. A mathmatical theory of natural and artificial selection Cambridge Phil. Soc. Trans. 23, 19–41 (1924).

    Google Scholar 

  15. Muller, H.J. The relation of recombination to mutational advance. Mutat. Res. 1, 2–9 (1964).

    Article  Google Scholar 

  16. Moore, J.C., Jin, H. & Arnold, F.H. Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. J. Mol. Biol. 272, 336–347 (1997).

    Article  CAS  Google Scholar 

  17. Tymms, M.J., McInnes, B., Alin, P., Linnane, A.W. & Cheetham, B.F. Structure-function studies of interferon-alpha based on random mutagenesis and expression in vitro. Genet. Anal. Techn. Appl. 7, 53–63 (1990).

    Article  CAS  Google Scholar 

  18. van der Meide, P.H. & Schellekens, H. Anti-cytokine autoantibodies: epiphenomenon or critical modulators of cytokine action. Biotherapy 10, 39–48 (1997).

    Article  CAS  Google Scholar 

  19. Konrad, M. Immunogenicity of proteins administered to humans for therapeutic purposes. Trends Biotechnol. 7, 175–179 (1989).

    Article  CAS  Google Scholar 

  20. Allegreta, M. et al. The development of anti-interleukin-2 antibodies in patients treated with recombinant human interleukin-2 (IL-2). J. Clin. Immunol. 6, 481–490 (1986).

    Article  Google Scholar 

  21. Lynch, M. & Wallace, B. in Genetics and analysis of quantitative traits (Sinauer Associates, Sunderland, MA; 1998).

  22. Fuh, G. et al. Rational design of potent antagonists to the human growth hormone receptor. Science 256, 1677–1680 (1992).

    Article  CAS  Google Scholar 

  23. Lowman, H.B. & Wells, J.A. Affinity maturation of human growth hormone by monovalent phage display. J. Mol. Biol. 234, 564–578 (1993).

    Article  CAS  Google Scholar 

  24. Thomas, J.W. et al. Potent interleukin 3 receptor agonist with selectively enhanced hematopoietic activity relative to recombinant interleukin 3. Proc. Natl. Acad. Sci. USA 92, 3779–3783 (1995).

    Article  CAS  Google Scholar 

  25. Wells, J.A. Additivity of mutational effects in proteins. Biochemistry 29, 8509–8517 (1990).

    Article  CAS  Google Scholar 

  26. Weber, H., Valaenzuela, D., Lujber, G., Gubler, M. & Weissmann, C. Single amino acid changes that render human IFN-alpha 2 biologically active on mouse cells. EMBO. J. 6, 591–598 (1987).

    Article  CAS  Google Scholar 

  27. Fish, E.N. Definition of receptor binding domains in interferon-alpha. J. Interferon Res. 12, 257–266 (1992).

    Article  CAS  Google Scholar 

  28. Uze, G. et al. Domains of interaction between alpha interferon and its receptor components. J. Mol. Biol. 243, 245–257 (1994).

    Article  CAS  Google Scholar 

  29. Gutterman, J.U. Cytokine therapeutics: lessons from interferon alpha. Proc. Natl. Acad. Sci. USA. 91, 1198–1205 (1994).

    Article  CAS  Google Scholar 

  30. Klaus, W., Gsell, B., Labhardt, A.M., Wipf, B. & Senn, H. The three-dimensional high resolution structure of human interferon alpha-2a determined by heteronuclear NMR spectroscopy in solution. J. Mol. Biol. 274, 661–675 (1997).

    Article  CAS  Google Scholar 

  31. Sambrook, J., Fritsch, E.F. & Maniatis, T. in Molecular cloning: a laboratory manual (Cold Spring Harbor Laboratory Press, New York; 1989).

    Google Scholar 

  32. Scarozza, A.M., Collins, T.J. & Evans, S.S. DNA synthesis in nuclei isolated from Daudi B cells: a model to study the antiproliferative mechanisms of interferon alpha. J. Interferon Res. 12, 35–42 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Peter Schultz, Mark Gallop, Eleanor Fish, Russell Howard, Jennifer Jones, Steve Bass, and Volker Heinrichs for critical reading of the manuscript. We thank Malcolm McGregor for assistance with the molecular graphics and Andreas Crameri for sharing unpublished DNA shuffling protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip A. Patten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CC., Chen, T., Cox, B. et al. Evolution of a cytokine using DNA family shuffling. Nat Biotechnol 17, 793–797 (1999). https://doi.org/10.1038/11737

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11737

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing