Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Highly Efficient Enzyme Recovery Using a Porous Membrane with Immobilized Tentacle Polymer Chains

Abstract

We describe a novel “tentacle-type” porous membrane that allows adsorption of enzymes in multilayers in amounts about 50-fold those permitted by monolayer adsorption. A diethylamino (DEA) group as an anion-exchanger was appended to a polymer chain, grafted onto the pores of a hollow-fiber membrane. A urease solution was forced to permeate through the pores of the anion-exchange membrane, which had a DEA group density up to 2.9 mmol per gram of membrane and a thickness of 0.8 mm. The grafted chain with a higher DEA group density provided a larger number of three-dimensional adsorption (tentacle-like binding) sites for urease. The binding capacity exceeded one gram of urease per gram of the membrane at DEA group densities higher than 1.6 mmol per gram, which amounted to a more than 37-fold greater amount of adsorbed enzyme compared to monolayer adsorption. In addition, urease captured by the DEA on the graft chain could be quantitatively eluted with retention of 90% of the feed urease activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brandt, S., Goffe, R.A., Kessler, S.B., O'Connor, J.L. and Zale, S.E. 1988. Membrane-based affinity technology for commercial scale purifications. Bio/Technology 6: 779–782.

    CAS  Google Scholar 

  2. Tennikova, T.B., Bleha, M., Svec, F., Almazova, T.V. and Belenkii, B. G. 1991. High-performance membrane chromatography of proteins. A novel method of protein separation. J. Chromatogr. 555: 97–107.

    Article  CAS  Google Scholar 

  3. Josic, D., Reusch, J., Loster, K., Baum, O. and Reutter, W. High-performance membrane chromatography of serum and plasma membrane proteins. 1992. J. Chromatogr. 590: 59–76.

    Article  CAS  Google Scholar 

  4. Shinano, H., Tsuneda, S., Saito, K., Furusaki, S. and Sugo, T. 1993. Ion exchange of lysozyme during permeation across a microporous sulfopropyl-group-containing hollow fiber. Biotechnol. Prog. 9: 193–198.

    Article  CAS  Google Scholar 

  5. Champluvier, B. and Kula, M.-R. 1991. Microfiltration membranes as pseudo-affinity adsorbents: modification and comparison with gel beads. J. Chromatogr. 539: 315–325.

    Article  CAS  Google Scholar 

  6. Iwata, H., Saito, K., Furusaki, S., Sugo, T. and Okamoto, J. 1991. Adsorption characteristics of an immobilized metal affinity membrane. Biotechnol. Prog. 7: 412–418.

    Article  CAS  Google Scholar 

  7. Kim, M., Saito, K., Furusaki, S., Sato, T., Sugo, T. and Ishigaki, I. 1991. Adsorption and elution of bovine γ-globulin using an affinity membrane containing hydrophobic amino acids as ligands. J. Chromatogr. 585: 45–51.

    Article  CAS  Google Scholar 

  8. Serafica, G.C., Pimbley, J. and Belfort, G. 1994. Protein fractionation using fast flow immobilized metal chelate affinity membranes. Biotech. Bioeng. 43: 21–36.

    Article  CAS  Google Scholar 

  9. Kugel, K., Moseley, A., Harding, G.B. and Klein, E. 1992. Microporous poly(caprolactam) hollow fibers for therapeutic affinity adsorption. J. Membr. Sci. 74: 115–129.

    Article  CAS  Google Scholar 

  10. Langlotz, P. and Kroner, K.H. 1992. Surface-modified membranes as a matrix for protein purification. J. Chromatogr. 591: 107–113.

    Article  CAS  Google Scholar 

  11. Nachaman, M., Azad, A.R.M. and Bailon, P. 1992. Membrane-based receptor affinity chromatography. J. Chromatogr. 597: 155–166.

    Article  Google Scholar 

  12. Muller, W. 1990. New ion exchangers for the chromatography of biopolymers. J. Chromatogr. 510: 133–140.

    Article  Google Scholar 

  13. Tsuneda, S., Shinano, H., Saito, K., Furusaki, S. and Sugo, T. 1994. Binding of lysozyme onto a cation-exchange microporous membrane containing tentacle-type grafted polymer branches. Biotechnol. Prog. 10: 76–81.

    Article  CAS  Google Scholar 

  14. Tsuneda, S., Saito, K., Furusaki, S. and Sugo, T. 1995. High-throughput processing of proteins using a porous and tentacle anion-exchange membrane. J. Chromatogr. 689: 211–218.

    Article  CAS  Google Scholar 

  15. Yamagishi, H., Saito, K., Furusaki, S., Sugo, T., Hosoi, F. and Okamoto, J. 1993. Molecular weight distribution of methyl methacrylate grafted onto a microfiltration membrane by radiation-induced graft polymerization. J. Membr. Sci. 85: 71–80.

    Article  CAS  Google Scholar 

  16. Tsuneda, S., Saito, K., Furusaki, S., Sugo, T. and Ishigaki, I. 1992. Water/acetone permeability of porous hollow-fiber membrane containing diethylamino groups on the grafted polymer branches. J. Membr. Sci. 71: 1–12.

    Article  CAS  Google Scholar 

  17. Kim, M., Kojima, J., Saito, K., Furusaki, S. and Sugo, T. 1994. Reduction of nonselective adsorption of proteins by hydrophilization of microfiltration membranes by radiation-induced grafting. Biotechnol. Prog. 10: 114–120.

    Article  CAS  Google Scholar 

  18. Sumner, J.B. and Hand, D.B. 1929. The isoelectric point of crystalline urease. J. Am. Chem. Soc. 31: 1255–1260.

    Article  Google Scholar 

  19. Searcy, R.L., Foreman, J.A., Ketz, A. and Reardon, J. 1967. A new automated method for urea nitrogen analysis. Am. J. Clin. Path. 47: 677–681.

    Article  Google Scholar 

  20. Horiike, K., Tojd, H., Yamano, T. and Nozaki, M. 1983. Interpretation of the stokes radius of macromolecules determined by gel filtration chromatography. J. Biochem. 93: 99–106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matoba, S., Tsuneda, S., Saito, K. et al. Highly Efficient Enzyme Recovery Using a Porous Membrane with Immobilized Tentacle Polymer Chains. Nat Biotechnol 13, 795–797 (1995). https://doi.org/10.1038/nbt0895-795

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0895-795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing