Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Targeted Insertion of Foreign Genes into the Tobacco Plastid Genome without Physical Linkage to the Selectable Marker Gene

Abstract

To determine whether targeted DNA insertion into the tobacco plastid genome can be obtained without physical linkage to a selectable marker gene, we carried out biolistic transformation of chloroplasts in tobacco leaf segments with a 1:1 mix of two independently targeted antibiotic resistance genes. Plastid transformants were selected by spectinomycin resistance due to expression of an integrated aadA gene. Integration of the unselected kanamycin resistance (kan) gene into the same plastid genome was established by Southern probing in 20% of the spectinomycin-selected clones. Efficient cotransformation will facilitate targeted plastid genome modification without physical linkage to a marker gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McBride, K.E., Svab, Z., Schaaf, D.J., Hogan, P.S., Stalker, D.M. and Maliga, P. 1995. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technology 13: 362–365.

    CAS  PubMed  Google Scholar 

  2. Zoubenko, O.V., Allison, L.A., Svab, Z. and Maliga, P. 1994. Efficient targeting of foreign genes into the tobacco plastid genome. Nucl. Acids Res. 22: 3819–3824.

    Article  CAS  Google Scholar 

  3. Staub, J. and Maliga, P. 1994. Translation of psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant. J. 6: 547–553.

    Article  CAS  Google Scholar 

  4. McBride, K.E., Schaaf, D.J., Daley, M. and Stalker, D.M. 1994. Controlled expression of plastid transgenes in plants based on a nuclear DNA-encoded and plastid-targeted T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 91: 7301–7305.

    Article  CAS  Google Scholar 

  5. Sutton, C.A., Zoubenko, O.V., Hanson, M.R. and Maliga, P. 1995. A plant mitochondrial sequence transcribed in transgenic tobacco chloroplasts is not edited. Mol. Cell. Biol. 15: 1377–1381.

    Article  CAS  Google Scholar 

  6. Maliga, P. 1993. Towards plastid transformation in flowering plants. Trends in Biotech. 11: 101–107.

    Article  CAS  Google Scholar 

  7. Maliga, P., Carrer, H., Kanevski, I., Staub, J. and Svab, Z. 1993. Plastid engineering in land plants: a conservative genome is open to change. Phil. Trans. R. Soc. Lond. B 342: 203–208.

    Article  CAS  Google Scholar 

  8. Bock, R., Kossel, H. and Maliga, P. 1994. Introduction of a heterologous editing site into the tobacco plastid genome: lack of RNA editing leads to a mutant phenotype. EMBO J. 13: 4623–4628.

    Article  CAS  Google Scholar 

  9. Bock, R. and Maliga, P. 1995. In vivo testing of a tobacco plastid DNA segment for guide RNA function in psbL editing. Molec. Gen. Genet. 247: 439–443.

    Article  CAS  Google Scholar 

  10. Newman, S.M., Gillham, N.W., Harris, E.H., Johnson, A.M. and Boynton, J.E. 1991. Targeted disruption of chloroplast genes in Chlamydomonas reinhardtii. Mol. Gen. Genet. 230: 65–74.

    Article  CAS  Google Scholar 

  11. Kindle, K.L., Richards, K.L. and Stern, D.B. 1991. Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 88: 1721–1725

    Article  CAS  Google Scholar 

  12. Roffey, R.A., Golbeck, J.H., Hille, C.R. and Syre, R.T. 1991. Photosynthetic electron transport in genetically altered photosystem II reaction centers of chloroplasts. Proc. Natl. Acad. Sci. USA 88: 9122–9126.

    Article  CAS  Google Scholar 

  13. Boynton, J.E. and Gillham, N.K. 1993. Chloroplast transformation in Chlamydomonas. Methods in Enzymol. 217: 510–536.

    Article  CAS  Google Scholar 

  14. Cannon, G., Heinhorst, S., Siedlecki, J. and Weissbach, A. 1985. Chloroplast DNA synthesis in light and dark grown cultured Nicotiana tabacum cells as determined by molecular hybridization. Plant Cell Reports 4: 41–45.

    Article  CAS  Google Scholar 

  15. Yasuda, T., Kuroiwa, T. and Nagata, T. 1988. Preferential synthesis of plastid DNA and increased replication of plastids in cultured tobacco cells following medium renewal. Planta 174: 235–241.

    Article  CAS  Google Scholar 

  16. Thomas, M.R. and Rose, R.J. 1983. Plastid number and plastid structural changes associated with tobacco mesophyll protoplast culture and plant regeneration. Planta 158: 329–338.

    Article  CAS  Google Scholar 

  17. Svab, Z. and Maliga, P. 1993. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90: 913–917.

    Article  CAS  Google Scholar 

  18. Carrer, H., Hockenberry, T.N., Svab, Z. and Maliga, P. 1993. Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Molec. Gen. Genet. 241: 49–56.

    Article  CAS  Google Scholar 

  19. Boynton, J.E., Gillham, N.W., Harris, E.H., Hosler, J.P., Johnson, A.M., Jones, A.R., Randolph-Anderson, B.L., Robertson, D., Klein, T.M., Shark, K.B. and Sanford, J.C. 1988. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240: 1534–1537.

    Article  CAS  Google Scholar 

  20. Kuroiwa, T. 1991. The replication, differentiation, and inheritance of plastids with emphasis in the concept of organelle nuclei. Int. Rev. Cytol. 128: 1–62.

    Article  CAS  Google Scholar 

  21. Liu, J.-W. and Rose, R.J. 1992. The spinach chloroplast chromosome is bound to the thylacoid membrane in the region of the inverted repeat. Biochem. Biophys. Res. Comm. 148: 993–1000.

    Article  Google Scholar 

  22. Sato, N., Albrieux, C., Joyard, J., Douce, R. and Kuroiwa, T. 1993. Detection and characterization of a plastid envelope DNA-binding protein which may anchor plastid nucleoids. EMBO J. 12: 555–561.

    Article  CAS  Google Scholar 

  23. Vieira, J. and Messing, J. 1987. Production of single-stranded plasmid DNA. Methods in Enzymol. 153: 3–11.

    Article  CAS  Google Scholar 

  24. Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., et al. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J. 5: 2043–2049.

    Article  CAS  Google Scholar 

  25. Murashige, T. and Skoog, F. 1962. A revised medium for the growth and bioassay with tobacco tissue culture. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  26. Carrer, H., Staub, J.M. and Maliga, P. 1991. Gentamycin resistance in Nicotiana conferred by AAC(3)-I, a narrow substrate specificity acetyltransferase. Plant Mol Biol. 17: 301–303.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pal Maliga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrer, H., Maliga, P. Targeted Insertion of Foreign Genes into the Tobacco Plastid Genome without Physical Linkage to the Selectable Marker Gene. Nat Biotechnol 13, 791–794 (1995). https://doi.org/10.1038/nbt0895-791

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0895-791

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing