Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Hyperproduction of Tryptophan in Corynebacterium glutamicum by Pathway Engineering

Abstract

We have performed pathway engineering of a tryptophan-producing strain of Corynebacterium glutamicum using cloned homologous genes. Plasmid-mediated amplification of a feedback-insensitive 3-deoxy-D-arabino-heptulospnate 7-phosphate synthase (DS) in the strain augmented the carbon flow down the common aromatic pathway, but caused concurrent excretion of chorismate, the last metabolite. Alternatively, introduction of a plasmid coexpressing the set of tryptophan-biosynthetic enzymes along with DS resulted hi formation of anthranilate, the first intermediate hi the tryptophan branch, as another byproduct. However, mutatkmal alterations of plasmid-encoded anthranilate synthase and anthranilate phosphoribosyltransferase, which rendered them insensitive to tryptophan inhibition, led to efficient channelling of carbon through the overall pathway to tryptophan. This engineered strain displays a 54 percent yield increase relative to its parent and produces 43 grams of tryptophan per liter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kinoshita, S. and Nakayama, K. 1978. Amino acids, p. 209–261. In: Primary Products of Metabolism. Rose, A. H. (Ed.). Academic Press, London, New York, San Francisco.

    Chapter  Google Scholar 

  2. Trive, D.E. and Pittard, J. 1979. Hyperproduction of tryptophan by Escherichia coli: genetic manipulation of the pathways leading to tryptophan formation. Appl. Environ. Microbiol. 38: 181–190.

    Google Scholar 

  3. Aiba, S., Tsunekawa, H. and Imanaka, T. 1982. New approach to tryptophan production by Escherichia coli: genetic manipulation of composite plasmids in vitro. Appl. Environ. Microbiol. 43: 289–297.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shiio, I., Ishii, K. and Yokozeki, R. 1973. Production of L-tryptophan by 5-fluorotryptophan resistant mutants of Bacillus subtilis. Agric. Biol. Chem. 37: 1991–2000.

    Article  CAS  Google Scholar 

  5. Kurahashi, O., Noda-Watanabe, M., Sato, K., Morinaga, Y. and Enei, H. 1987. Altered regulation occurring in the aromatic amino acid biosynthetic pathway of L-tryptophan-producing mutants derived from Bacillus subtilis K. Agric. Biol. Chem. 51: 1785–1790.

    CAS  Google Scholar 

  6. Hagino, H. and Nakayama, K. 1975. L-Tryptophan production by analog-resistant mutants derived from a phenylalanine and tyrosine double auxotroph of Corynebacterium glutamicum. Agric. Biol. Chem. 39: 343–349.

    CAS  Google Scholar 

  7. Shiio, I., Sugimoto, S. and Kawamura, K. 1984. Production of L-tryptophan by sulfonamide-resistant mutants. Agric. Biol. Chem. 48: 2073–2080.

    CAS  Google Scholar 

  8. Umbarger, H.E. 1978. Amino acid biosynthesis and its regulation. Ann. Rev. Biochem. 47: 533–606.

    Article  CAS  Google Scholar 

  9. Hagino, H. and Nakayama, K. 1974. DAHP synthetase and its control in Corynebacterium glutamicum. Agric. Biol. Chem. 38: 2125–2134.

    CAS  Google Scholar 

  10. Hagino, H. and Nakayama, K. 1975. Regulatory properties of anthranilate synthetase from Corynebacterium glutamicum. Agric. Biol. Chem. 39: 323–330.

    CAS  Google Scholar 

  11. Sugimoto, S. and Shiio, I. 1977. Enzymes of the tryptophan synthetic pathway in Brevibacterium flavum. J. Biochem. 81: 823–833.

    Article  CAS  PubMed  Google Scholar 

  12. Sugimoto, S. and Shiio, I. 1983. Regulation of tryptophan biosynthesis by feedback inhibition of the second-step enzyme, anthranilate phosphoribo-syltransferase, in Brevibacterium flavum. Agric. Biol. Chem. 47: 2295–2305.

    CAS  Google Scholar 

  13. Shiio, I., Miyajima, R. and Nakagawa, M. 1972. Regulation of aromatic amino acid biosynthesis in Brevibacterium flavum. J. Biochem. 72: 1447–1455.

    Article  CAS  PubMed  Google Scholar 

  14. Katsumata, R., Ozaki, A., Oka, T. and Furuya, A. 1984. Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J. Bacteriol. 159: 306–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ozaki, A., Katsumata, R., Oka, T. and Furuya, A. 1984. Functional expression of the genes of Escherichia coli in gram-positive Corynebacterium glutamicum. Mol. Gen. Genet. 196: 175–178.

    Article  CAS  PubMed  Google Scholar 

  16. Santamaria, R., Gil, J.A., Mesas, J.M. and Martin, J.F. 1984. Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. J. Gen. Microbiol. 130: 2237–2246.

    CAS  Google Scholar 

  17. Yoshihama, M., Higashiro, K., Rao, E.A., Akedo, M., Shanabruch, W.G., Follettie, M.T., Walker, G.C. and Sinskey, A.J. 1985. Cloning vector system for Corynebacterium glutamicum. J. Bacteriol. 162: 591–597.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ozaki, A., Katsumata, R., Oka, T. and Furuya, A. 1985. Cloning of the genes concerned in phenylalanine biosynthesis in Corynebacterium glutamicum and its application to breeding of a phenylalanine producing strain. Agric. Biol. Chem. 49: 2925–2930.

    CAS  Google Scholar 

  19. Katsumata, R., Mizukami, T., Kikuchi, Y. and Kino, K. 1986. Threonine production by the lysine producing strain of Corynebacterium glutamicum with amplified threonine biosynthetic operon, p. 217–226. In: Genetics of Industrial Microorganisms. Alacevic, M., Hranueli, D. and Toman, Z. (Eds.). B. Pliva, Zagreb, Yugoslavia.

    Google Scholar 

  20. Ikeda, M. and Katsumata, R. 1992. Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl. Environ. Microbiol. 58: 781–785.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gibson, F. 1964. Chorismic acid: purification and some chemical and physical studies. Biochem. J. 90: 256–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yanofsky, C., Platt, T., Crawford, I.P., Nichols, B.P., Christie, G.E., Horowitz, H., VanCleemput, M. and Wu, A.M. 1981. The complete nucleotide sequence of the tryptophan operon of Escherichia coli. Nucl. Acids Res. 9: 6647–6668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Henner, D.J., Band, L. and Shimotsu, H. 1984. Nucleotide sequence of the Bacillus subtilis tryptophan operon. Gene 34: 169–177.

    Article  Google Scholar 

  24. Matsui, K., Sano, K. and Ohtsubo, E. 1986. Complete nucleotide and deduced amino acid sequences of the Brevibacterium lactofermentum tryptophan operon. Nucl. Acids Res. 14: 10113–10114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sugimoto, S. and Shiio, I. 1980. Purification and properties of dissociable chorismate mutase from Brevibacterium flavum. J. Biochem. 88: 167–176.

    CAS  PubMed  Google Scholar 

  26. Katsumata, R., Mizukami, T., Ozaki, A., Kikuchi, Y., Kino, K., Oka, T. and Furuya, A. 1987. Gene cloning in glutamic acid bacteria: the system and its applications, p. 767–776. In: Proc. 4th Bur. Congr. Biotechnol., Amsterdam. Neijssel O.M., van der Meer R. R. and Luyben K. Ch. A. M. (Eds.). Elsevier, UK.

    Google Scholar 

  27. Messing, J. 1983. New M13 vectors for cloning. Methods Enzymol. 101: 20–78.

    Article  CAS  PubMed  Google Scholar 

  28. Gynheung, A. and Friesen, J.D. 1979. Plasmid vehicles for direct cloning of Escherichia coli promoters. J. Bacteriol. 140: 400–407.

    Google Scholar 

  29. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  30. Saito, H. and Miura, K. 1963. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72: 619–629.

    Article  CAS  PubMed  Google Scholar 

  31. Vogelstein, B. and Gillespie, D. 1979. Preparative and analytical purification of DNA from agarose. Proc. Natl. Acad. Sci. USA 76: 615–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  33. Sprinavason, P.R. and Sprinson, D.B. 1959. 2-Keto-3-deoxy-D-arabo-heptonic acid 7-phosphate synthetase. J. Biol. Chem. 234: 716–722.

    Google Scholar 

  34. Hill, D.W., Walters, F.H., Wilson, T.D. and Stuart, J.D. 1979. High performance liquid chromatographic determination of amino acids in the picomole range. Anal. Chem. 51: 1338–1341.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsumata, R., Ikeda, M. Hyperproduction of Tryptophan in Corynebacterium glutamicum by Pathway Engineering. Nat Biotechnol 11, 921–925 (1993). https://doi.org/10.1038/nbt0893-921

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0893-921

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing