Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Enhancing the Thermostability of Glucose Isomerase by Protein Engineering

Abstract

We have engineered recombinant glucose isomerase (GI) from Actinoplanes missouriensis by site-directed mutagenesis to enhance its thermal stability in both the soluble and immobilized forms. Substitution of arginine for lysine at position 253, which lies at the dimer/dimer interface of the GI tetramer, produced the largest stabilization under model industrial conditions. We discuss our results in terms of a model in which chemical glycation of lysines by sugars in the industrial corn syrup substrate represents a major pathway of destabilization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chen, W.-P. 1980. Glucose isomerase (a review). Process Biochem. June/July: 30–35.

    Google Scholar 

  2. Chen, W.-P. 1980. Glucose isomerase (a review). Process Biochem. August/Sept: 36–41.

    Google Scholar 

  3. Jensen, V.J. and Rugh, S. 1987. Industrial-scale production and application of immobilized glucose isomerase. Methods Enzymol. 136: 356–370.

    Article  CAS  Google Scholar 

  4. Farber, G.K. 1987. The 3 Å crystal structure of xylose isomerase from Streptomyces olivochromogenes. Protein Eng. 1: 459–466.

    Article  CAS  Google Scholar 

  5. Henrick, K., Blow, D.B., Carrell, H.L. and Glusker, J.P. 1987. Comparison of the backbone structures of glucose isomerase from Streptomyces and Arthrobacter. Protein Eng. 1: 467–469.

    Article  CAS  Google Scholar 

  6. Rey, F., Jenkins, J., Janin, J., Lasters, I., Alard, P., Claessens, M., Matthyssens, G. and Wodak, S. 1988. Structural analysis of the 2.8 Å model of xylose isomerase from Actinoplanes missouriensis. Proteins 4: 165–172.

    Article  CAS  Google Scholar 

  7. Miller, S., Lesk, A.M., Janin, J. and Chotia, C. 1987. The accessible surface area and stability of oligomeric proteins. Nature 27: 834–836.

    Article  Google Scholar 

  8. Bunn, H.F., Haney, D.N., Gabbay, K.N. and Gallop, P.M. 1975. Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c Biochem. Biophys. Res. Comm. 67: 103–109.

    Article  CAS  Google Scholar 

  9. Alber, T. 1989. Mutational effects on protein stability. Ann. Rev. Biochem. 58: 765–798.

    Article  CAS  Google Scholar 

  10. Matthews, B.W., Nicholson, H. and Becktel, W.J. 1987. Enhanced protein stability from site-directed mutations that decrease the entropy of unfolding. Proc. Natl. Acad. Sci. U.S.A. 84: 6663–6667.

    Article  CAS  Google Scholar 

  11. Hecht, H.M., Sturtevant, J.M. and Sauer, R.T. 1984. Stabilization of lambda represser against thermal denaturation by site-directed Gly to Ala changes in α-helix three. Proc. Natl. Acad. Sci. U.S.A. 81: 5685–5689.

    Article  CAS  Google Scholar 

  12. Alber, T., Sun, D.-P., Nye, J.A., Muchmore, D.C. and Matthews, B.W. 1987. Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites of low solvent accessibility in the folded protein. Biochemistry 26: 3754–3758.

    Article  CAS  Google Scholar 

  13. Wigley, D.B., Clarke, A.R., Dunn, C.R., Barstow, D.A., Atkinson, T., Chia, W.N., Muirhead, H. and Holbrook, J.J. 1987. The engineering of a more thermally stable lactate dehydrogenase by reduction of the area of water-accessible hydrophobic surface. Biochim. Biophyc. Acta 916: 145–148.

    Article  CAS  Google Scholar 

  14. Howard Flanders, P., Boyce, R.P. and Theriot, L. 1966. Three loci in Escherichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagenic products from DNA. Genetics 53: 1119–1136.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Stanssens, P., Opsomer, C., Beyart, M., van Vliet, A. and Lauwereys, M. Production, purification and characterization of recombinant Actinoplanes missouriensis D-xylose isomerase. Submitted.

  16. Stanssens, P., Opsomer, C., McKeown, Y.M., Kramer, W., Zabeau, M. and Fritz, H.J. 1989. Efficient oligonucleotide directed construction of mutations in expression vectors by the gapped duplex DNA method using alternating selectable markers. Nuc. Acids Res. 17: 4441–4454.

    Article  CAS  Google Scholar 

  17. Colson, C., Clocer, S.W., Sijmonds, N. and Stacy, K. 1965. The location of the genes for host controlled modification and restriction in Escherichia coli K-12. Genetics 52: 1043–1050.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mrabet, N.T., van den Broeck, A., van den Brande, I., Stanssens, P. et al. 1991. Argine residues as stabilizing elements in proteins. Biochemistry. In press.

    Google Scholar 

  19. Furth, A. 1988. Sweet perils for proteins. New Scientist 117: 58–62.

    CAS  Google Scholar 

  20. Carrell, H.L., Glusker, J.P., Burger, V., Tritsch, D. and Bieleman, J.-F. 1989. X-ray analysis of D-xylose isomerase at 1.9 Å: Native enzyme in complex with substrate and with a mechanism designed inactivator. Proc. Natl. Acad. Sci. U.S.A. 86: 4440–4444.

    Article  CAS  Google Scholar 

  21. Levitt, M. 1978. Conformational preferences of amino acids in globular proteins. Biochemistry 17: 4277–4285.

    Article  CAS  Google Scholar 

  22. Powell, L.W. 1984. Developments in immobilized-enzyme technology. Biotechnology and Genetic Engineering Rev. 2: 409–438.

    Article  CAS  Google Scholar 

  23. Klibanov, A.M. 1982. Immobilized enzymes and cells as practical catalysts. Science 219: 722–727.

    Article  Google Scholar 

  24. Van Tilburg, R. and Roels, J.A. 1982. An improved productivity and stability test for immobilized enzymes with reference to glucose isomerase. Die Stärke 34: 134–140.

    Article  CAS  Google Scholar 

  25. Furth, A.J. 1988. Methods for assaying non-enzymatic glycosylation. Anal. Biochem. 175: 347–360.

    Article  CAS  Google Scholar 

  26. Volkin, D.B. and Klibanov, A.M. 1989. Mechanism of thermoinactivation of immobilized glucose isomerase. Biotechnol. Bioeng. 33: 1104–1111.

    Article  CAS  Google Scholar 

  27. Amore, A. and Hollenberg, C.P. 1989. Xylose isomerase from Actinoplanes missouriensis: primary structure of the gene and the protein. Nuc. Acids Res. 17: 7515.

    Article  CAS  Google Scholar 

  28. Farber, G.K., Glasfeld, A., Tiraby, G., Ringe, D. and Petsko, G.A. 1989. Crystallographic studies of the mechanism of xylose isomerase. Biochemistry 28: 7289–7297.

    Article  CAS  Google Scholar 

  29. Callens, M., Kersters-Hilderson, H., Van Opstal, O. and DeBruyne, C.K. 1986. Catalytic properties of D-xylose isomerase from Streptomyces violaceoruber. Enzyme Microb. Technol. 8: 696–700.

    Article  CAS  Google Scholar 

  30. Roels, J.A. and van Tilburg, R. 1979. Temperature dependence of stability and activity of an immobilized glucose isomerase in a packed bed. Die Stärke 31: 17–24.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quax, W., Mrabet, N., Luiten, R. et al. Enhancing the Thermostability of Glucose Isomerase by Protein Engineering. Nat Biotechnol 9, 738–742 (1991). https://doi.org/10.1038/nbt0891-738

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0891-738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing