Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Functional Expression of Human Monoclonal Antibody Genes Directed Against Pseudomonal Exotoxin A in Mouse Myeloma Cells

Abstract

We have cloned immunoglobulin (Ig) genes from an Epstein-Barr (EB) virus-transformed human B cell line, FK-001, which produced a monoclonal human IgM that specifically binds Pseudomonas aeruginosa exotoxin A (Ex-A). Cloned Ig genomic DNA was introduced into Ig non-producing mouse myeloma cells, P3-X63-Ag-8-6.5.3. (653) and Sp2/0-Ag14 (Sp2/0), by protoplast fusion or electroporation using a series of pSV2 vectors. Transfectant-derived recombinant antibodies (r-Abs) and antibodies produced by the original cell FK-001 did not differ in binding specificity or affinity to Ex-A. Recombinant antibodies and those of FK-001 were pentameric although joining (J) genes of human origin were not introduced into the mouse myeloma cells. Heterogeneity in the molecular weights of r-Abs expressed in different mouse myeloma cells was observed, and shown to be due to differential N-glycosylation of the μ-chain polypeptides. Thus, human Ig μ and κ genomic DNA with its own promoters and enhancers can function efficiently in mouse myeloma cells in vivo resulting in transfectants that synthesize active human IgM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. James, H. and Bell, G.T. 1987. Human monoclonal antibody production. Current status and future prospects. J. Immunol. Methods 100:5–40.

    Article  CAS  Google Scholar 

  2. Stemitz, M., Klein, G., Koskimies, S. and Makel, O. 1977. EB virus-induced B lymphocyte cell lines producing specific antibody. Nature 269:420–422.

    Article  Google Scholar 

  3. Schlom, J., Wunderlich, D. and Teramoto, Y.A. 1980. Generation of human monoclonal antibodies reactive with human mammary carcinoma cells. Proc. Natl. Acad. Sci. USA 77:6841–6845.

    Article  CAS  Google Scholar 

  4. Olsson, L. and Kaplan, H.S. 1980. Human-human hybridomas producing monoclonal antibodies of predefined antigenic specificity. Proc. Natl. Acad. Sci USA 77:5429–5431.

    Article  CAS  Google Scholar 

  5. Teng, N.N.H., Lam, K.S., Riera, F.C. and Kaplan, H.S. 1983. Contruction and testing of mouse-human heteromyelomas for human monoclonal antibody production. Proc. Natl. Acad. Sci. USA 80:7308–7312.

    Article  CAS  Google Scholar 

  6. Vasil, M.L., Rabat, D. and Iglewski, B.H. 1977. Structure-activity relationship of an exotoxin of Pseudomonas aeruginosa. Infect. Immun. 16:353–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gray, G.L., Smith, D.H., Baldridge, L.S., Harkins, R.H., Vasil, M.L., Chen, E.Y. and Heyneker, H.L. 1984. Cloning, nucleotide sequence, and expression in Escherichia coli of the exotoxin A structural gene of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 81:2645–2649.

    Article  CAS  Google Scholar 

  8. Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.

    Article  CAS  Google Scholar 

  9. Parslow, T.G., Blair, D.L., Murphy, W.L. and Grannier, D.K. 1984. Structure of the 5′ ends of immunoglobulin genes: A novel conserved sequence. Proc. Natl. Acad. Sci. USA 81:2650–2654.

    Article  CAS  Google Scholar 

  10. Falkner, F.G. and Zachau, H.G. 1984. Correct transcription of an immunoglobulin κ gene requires an upstream fragment containing conserved sequence elements. Nature 310:71–74.

    Article  CAS  Google Scholar 

  11. Kabat, E.A., Wu, T.T., Bilofsky, H., Reind-Miller, M. and Perry, H. 1987. Sequences of Proteins of Immunological Interest. U. S. Department of Health and Human Services, N. I. H., Bethesda.

  12. Klobeck, H.G., Bornkamm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. and Zachau, H.G. 1985. Subgroup IV of human immunoglobulin K light chains is encoded by a single germline gene. Nucl. Acids Res. 13:6515–6529.

    Article  CAS  Google Scholar 

  13. Hieter, P.A., Maizel, J.V. and Leder, P. 1982. Evolution of human immunoglobulin κJ region genes. J. Biol. Chem. 257:1516–1522.

    CAS  PubMed  Google Scholar 

  14. Potter, H., Weir, L. and Leder, P. 1984. Enhancer-dependent expression of human κ immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc. Natl. Acad. Sci. USA 81:7161–7165.

    Article  CAS  Google Scholar 

  15. Perucho, M., Hanahan, D. and Wigler, M. 1980. Genetic and physical linkage of exogeneous sequences in transformed cells. Cell 22:309–317.

    Article  CAS  Google Scholar 

  16. Pellicer, A., Wigler, M., Axel, R. and Silverstein, S. 1978. The transfer and stable integration of the HSV thymidine kinase gene into mouse cells. Cell 14:133–141.

    Article  CAS  Google Scholar 

  17. Sandri-Goldin, R.M., Goldin, A.L., Levine, M. and Glorioso, J.C. 1981. High frequency transfer of cloned herpes simplex virus type I sequences to mammalian cells by protoplast fusion. Mol. Cell. Biol. 1:743–752.

    Article  CAS  Google Scholar 

  18. Morrison, S.L., Johnson, M.J., Herzenberg, L.A. and Oi, V.T. 1984. Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains. Proc. Natl. Acad. Sci. USA 81:6851–6855.

    Article  CAS  Google Scholar 

  19. Boulianne, S.H., Hozumi, N. and Shulman, M.J. 1984. Production of a functional chimaeric mouse/human antibody. Nature 312:643–646.

    Article  CAS  Google Scholar 

  20. Sun, L.K., Curtis, P., Rakowicz-Szulczynska, E., Ghrayeb, J., Chang, N., Morrison, S. and Koprowski, H. 1987. Chimeric antibody with human constant regions and mouse variable regions directed against carcinoma-associated antigen 17-1 A. Proc. Natl. Acad. Sci. USA 84:214–218.

    Article  CAS  Google Scholar 

  21. Kudo, A., Ishihara, T., Nishimura, Y. and Watanabe, T. 1985. A cloned human immunoglobulin heavy chain gene with a novel direct-repeat sequence in the 5′ flanking region. Gene 33:181–189.

    Article  CAS  Google Scholar 

  22. Nishimura, Y., Yokoyama, M., Araki, K., Ueda, R. and Watanabe, T. 1987. Recombinant human-mouse chimeric monoclonal antibody specific for common acute lymphocytic leukemia antigen. Cancer Res 47:999–1005.

    CAS  PubMed  Google Scholar 

  23. Koshland, M.E. 1983. The coming of age of the immunoglobulin J chain. Ann. Rev. Immunol. 3:425–453.

    Article  Google Scholar 

  24. Takatsuki, A., Kohno, K. and Tamura, G. 1975. Inhibition of biosynthesis of polyisoprenol sugars in chick embryo microsomes by tunicamycin. Agr. Biol. Chem. 39:2089–2091.

    CAS  Google Scholar 

  25. Frischauf, A., Lehrach, H., Poustka, A. and Murray, N. 1983. Lambda replacement vectors carrying polylinkers sequences. J. Mol. Biol. 170:827–842.

    Article  CAS  Google Scholar 

  26. Ravetch, J.F., Siebenlist, U., Korsmeyer, S., Waldmann, T. and Leder, P. 1981. Structure of human immunoglobulin μ locus: Characterization of embryonic and rearranged J and D genes. Cell 27:583–591.

    Article  CAS  Google Scholar 

  27. Takahashi, T., Nakai, S. and Honjo, T. 1980. Cloning of human immunoglobulin gene and comparison with mouse μ gene. Nucl. Acids Res. 8:5983–5991.

    Article  CAS  Google Scholar 

  28. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557–580.

    Article  CAS  Google Scholar 

  29. Yanisch-Perron, C., Vieira, J. and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119.

    Article  CAS  Google Scholar 

  30. Murray, N.E., Brammer, W.J. and Murray, K. 1977. Lamboid phages that simplify the recovery of in vitro recombinants. Mol. Gen. Genet. 50:53–61.

    Article  Google Scholar 

  31. Maniatis, T., Fritsch, E.F. and Sambrook, J., 1982. Molecular cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  32. Okayama, H. and Berg, P. 1982. High-efficiency cloning of full-length cDNA. Mol. Cell. Biol. 2:161–170.

    Article  CAS  Google Scholar 

  33. Grunstein, M. and Hogness, D.S. 1975. Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. USA 72:3961–3965.

    Article  CAS  Google Scholar 

  34. Rigby, P.W. J., Dieckmann, M., Rhodes, C. and Berg, P. 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237–251.

    Article  CAS  Google Scholar 

  35. Benton, W.D. and Davis, R.W. 1977. Screening λgt recombinant clones by hybridization to single plaques in situ. Science 196:80–182.

    Article  Google Scholar 

  36. Hattori, M. and Sakaki, Y. 1986. Dideoxy sequencing method using denatured plasmid template. Analytical Biochem. 152:232–238.

    Article  CAS  Google Scholar 

  37. Voller, A., Bidwell, D. and Bartlett, A. 1980. p. 359–371. In: Manual of clinical immunology, 2nd Ed., N. R. Rose and H. Friedman (Eds.). American Society for Microbiology, Washington, D. C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakatani, T., Nomura, N., Horigome, K. et al. Functional Expression of Human Monoclonal Antibody Genes Directed Against Pseudomonal Exotoxin A in Mouse Myeloma Cells. Nat Biotechnol 7, 805–810 (1989). https://doi.org/10.1038/nbt0889-805

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0889-805

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing