Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular Genetic Strategies for the Development of Anti-Malarial Vaccines

Abstract

Malaria is one of the most important parasitic diseases of man. Efforts to reduce the prevalence and continued geographic spread of this disease by chemotherapy and spraying with insecticides to eradicate the mosquito vector have been hindered by the emergence of resistant strains of both parasite and vector. Recent advances in the identification and characterization of antigens associated with different stages of the parasite life cycle offer new opportunities for vaccination as a strategy for disease control. This article surveys current knowledge of the properties of candidate antigens for stage-specific malaria vaccines, describes progress in cloning the genes for these molecules and outlines current concepts regarding the feasibility of disease control by vaccination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sturchler, D. 1984. Malaria prophylaxis in travellers: the current position. Experientia 40(12): 1357–1362.

    CAS  PubMed  Google Scholar 

  2. Garnham, P.C.C. 1984. The present state of malaria research: an historical survey. Experientia 40(12): 1305–1310.

    CAS  PubMed  Google Scholar 

  3. Perrin, L., Perez, A. and Chizzolini, C. 1984. Malaria: immunity, vaccination and immunodiagnosis. Experientia 40(12): 1343–1350.

    CAS  PubMed  Google Scholar 

  4. Wernsdorfer, W.H. 1983. Urgent efforts needed to combat drug-resistant malaria. WHO Chronicle 37(1): 11–13.

    CAS  PubMed  Google Scholar 

  5. Doberstyn, E.B. 1984. Resistance of Plasmodium falciparum. Experientia 40: 1311–1317.

    CAS  PubMed  Google Scholar 

  6. Aron, J.L. and May, R.M. 1982. The population dynamics of malaria, p. 139–179. In: Population Dynamics of Infectious Diseases, Theory and Applications, Anderson, R. M. (ed.) Chapman and Hall.

    Google Scholar 

  7. Trager, W. and Jensen, J.B. 1976. Human malaria parasites in continuous culture. Science 193: 673–675.

    CAS  PubMed  Google Scholar 

  8. Mitchell, G.H. 1984. Vaccination against malaria: its plausibility and the present state of research. Vaccine 2: 115–124.

    CAS  PubMed  Google Scholar 

  9. Allison, A.C. 1984. Cellular immunity to malaria and babesia parasites: a personal viewpoint, p. 463–490 In: Contemporary Topics in Immunobiology Vol. 12, Immunobiology of Parasites and Parasitic Infections, Marchalonis, J. J. (ed.), Plenum Press

    Google Scholar 

  10. Molineaux, L. and Gramicia, G. 1980. The Garki Project: research on the epidemiology and control of malaria in the Sudan Savanna of West Africa. World Health Organisation, Geneva.

    Google Scholar 

  11. Kretschmar, W. and Voller, A. 1973. Suppression of Plasmodium falciparum malaria in Aotus monkeys by milk diet. Z Tropenmed. Parasitol. 24: 51–59.

    CAS  PubMed  Google Scholar 

  12. Pasvol, G. et al. 1976. Foetal hoemoglobin and malaria. Lancet i: 1269–1272.

    Google Scholar 

  13. Perrin, L.H. Rodriguez da Silva, L. and Dayal, R. 1984. Antigenic characterization of plasmodia, p. 109–125. In: Contemporary Topics in Immunobiology Vol. 12, Immunobiology of Parasites and Parasitic Infections, Marchalonis, J.J. (ed.), Plenum Press.

    Google Scholar 

  14. Howard, R.J. and Barnwell, J.W. 1984. Roles of surface antigens on malaria-infected red blood cells in evasion of immunity, p. 127–200. In: Contemporary Topics in Immunobiology Vol. 12, Immunobiology of Parasites and Parasitic Infections, Marchalonis, J. J. (ed.), Plenum Press

    Google Scholar 

  15. Shortt, H.E., Pardit, S.R., Menon, K.P. and Swaminath, C. 1938. Absence of effective immunity after cure of protozoal infections. Indian J. Med. Res. 25: 763–777.

    Google Scholar 

  16. Klein, G. and Klein, E. 1985. Evolution of tumours and the impact of molecular oncology. Nature 315: 190–195.

    CAS  PubMed  Google Scholar 

  17. Miller, L.H. 1985. Research toward a malaria vaccine: a critical review, p. 1–5. In: Vaccines 85, Molecular and Chemical Basis of Resistance to Parasitic, Bacterial, and Viral Diseases, Lerner, R. A., Chanock, R. M. and Brown, F. (eds.), Cold Spring Harbor Laboratory.

    Google Scholar 

  18. Miller, L.H., David, P.H. and Hadley, T.J. 1984. Perspectives for malaria vaccination. Phil. Trans. Roy. Soc. London 307: 99–108.

    CAS  Google Scholar 

  19. Wery, M., Weyn, J., Timperman, A. and Hendrix, L. 1979. Observations on the virulence and the antigenic characters of clones and uncloned lines of the Anka isolate of Plasmodium berghei. 1. Production of recrudescent parasitemias in immunized mice. Ann. Soc. Belge. Med. Trop. 59: 347–360.

    CAS  Google Scholar 

  20. Knowles, G. and Walliker, D. 1980. Variable expression of virulence in the rodent malaria Plasmodium yoelii yoelii. Parasitology 81: 211–219.

    CAS  PubMed  Google Scholar 

  21. Hommel, M., David, P.H. and Oligino, L.D. 1983. Surface alterations of erythrocytes in Plasmodium falciparum malaria. J. Exp. Med. 157: 1137–1148.

    CAS  PubMed  Google Scholar 

  22. David, P.H. et al. 1985. Immunization of monkeys with a 140 kilodalton merozoite surface protein of plasmodium knowlesi malaria: appearance of alternate forms of this protein. J. Immunology 134(6): 4146–4152.

    CAS  Google Scholar 

  23. Yoshida, N. et al. 1980. Hybridoma produces protective antibodies directed against the sporozoite stage of malaria parasites. Science 207: 71–73.

    CAS  PubMed  Google Scholar 

  24. Nussenszweig, R.S., Vanderberg, J. and Most, H. 1969. Protective immunity produced by the injection of X-irradiated sporozoites of Plasmodium berghei IV. Dose response, specificity and humoral immunity. Mil. Med. (suppl.) 134: 1176–1182.

    Google Scholar 

  25. Zavala, R. et al. 1983. Circumsporbzoite proteins of malaria parasites contain a single immunodominant region with two or more identical epitopes. J. Exp. Med. 157: 1947–1957.

    CAS  PubMed  Google Scholar 

  26. Potocnaj, P., Yoshida, N., Nussenzweig, R.S. and Nussenzweig, V. 1980. Monovalent fragments (Fab) of monoclonal antibodies to sporozoite surface antigen (Pb44) protect mice against malarial infection. J. Exp. Med. 151: 1504–1513.

    Google Scholar 

  27. Clyde, D.F., Most, H., McCarthy, V. and Vanderberg, J.P. 1973. Immunization of man against sporozoite induced falciparum malaria. Amer. J. Med. Sci. 266: 166–177.

    Google Scholar 

  28. Ellis, J. et al. 1983. Cloning and expression in E . coli of the malaria sporozoite surface antigen gene from Plasmodium knowlesi. Nature 302: 536–538.

    CAS  PubMed  Google Scholar 

  29. Ozaki, L.S. et al. 1983. Structure of the Plasmodium knowlesi gene coding for the circumsporozoite protein. Cell 34: 815–822.

    CAS  PubMed  Google Scholar 

  30. Sharma, S. et al. 1985. Diversity of CS-genes from two different strains of the malarial parasite P . knowlesi. Science, in press.

    Google Scholar 

  31. Enea, V. et al. 1984. Circumsporozoite gene of Plasmodium cynomolgi (Gombak): cDNA cloning and expression of the repetitive circumsporozoite epitope. Proc. Natl. Acad. Sci. USA 81: 7520–7524.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cochrane, A.H. et al. 1985. Mol. Biochem. Parasitol. 14: 111–124.

    CAS  PubMed  Google Scholar 

  33. Zavala, F., Masuda, A. and Nussenzweig, R.S. 1984. Species specific epitope is identical in phenotypically different circumsporozoite proteins of human malaria. Fedn Proc. Fedn Am. Socs Exp. Biol. 43: 1808.

    Google Scholar 

  34. Dame, J.B. et al. 1984. Structure of the gene encoding the immuno-dominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science 225: 593–599.

    CAS  PubMed  Google Scholar 

  35. Enea, V. et al. 1984. DNA cloning of Plasmodium falciparum circumsporozoite gene: amino acid sequence of repetitive epitope. Science 25: 628–630.

    Google Scholar 

  36. Ballou, W.R. et al. 1985. Immunogenicity of synthetic peptides from circumsporozoite protein of Plasmodium falciparum. Science 228: 996–999.

    CAS  PubMed  Google Scholar 

  37. Vergara, V. et al. 1985. Conserved group-specific epitopes of the circumsporozoite proteins revealed by antibodies to synthetic peptides. J. Immunol. 134: 3445–3448.

    CAS  PubMed  Google Scholar 

  38. Young, J.F. et al. 1985. Expression of P. falciparum circumsporozoite protein derivatives in E. coli for development of a human malaria vaccine. Science 228: 958–962.

    CAS  PubMed  Google Scholar 

  39. Zavala, F. et al. 1985. Rationale for the development of a synthetic vaccine against P. falciparum malaria. Science, in press.

    Google Scholar 

  40. Ballou, W.P. 1985. Immunogenicity of synthetic peptides from circumsporozoite protein of Plasmodium falciparum. Science 228: 996–999.

    CAS  PubMed  Google Scholar 

  41. Smith, G.L. et al. 1984. Expression of antigenic and immunogenic Plasmodium knowlesi circumsporozoite protein by an infectious vaccinia virus recombinant. Science 224: 397–399.

    CAS  PubMed  Google Scholar 

  42. Smith, G.L. and Moss, B. 1984. Vaccinia virus expression vectors: construction, properties and applications. Biotechniques 306–312.

  43. Cohen, S., McGregor, I.A. and Carrington, S.C. 1961. Gamma globulin and acquired immunity to human malaria. Nature 192: 733–737.

    CAS  PubMed  Google Scholar 

  44. Miller, L.H., McAuliffe, F.M. and Mason, S.J. 1977. Erythrocyte receptors for malaria merozoites. Am. J. Trop. Med. Hyg. 26: 204–208.

    CAS  PubMed  Google Scholar 

  45. Aikawa, M., Miller, L.H., Johnson, J. and Rabbege, J. 1978. Erythrocyte entry by malaria merozoites. A moving junction between erythrocyte and parasite. J. Cell. Biol. 77: 72–82.

    CAS  PubMed  Google Scholar 

  46. Perlmann, H. et al. 1984. Antibodies in malarial sera to parasite antigens on the surface of erythrocytes infected with early asexual stages of Plasmodium falciparum. J. Exp. Med. 159: 1686–1704.

    CAS  PubMed  Google Scholar 

  47. Kilejian, A. 1979. Characterization of a protein correlated with the production of knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 76: 4650–4653.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Luse, S.A. and Miller, L.H. 1971. Plasmodium falciparum malaria. Ultrastructure of parasitized erythrocytes in cardiac vessels. Am. J. Trop. Med. Hyg. 20: 655–660.

    CAS  PubMed  Google Scholar 

  49. Miller, L.H. et al. 1977. Evidence for differences in erythrocyte surface receptors for the malarial parasites, Plasmodium falciparum and Plasmodium knowlesi. J. Exp. Med. 146: 277–281.

    CAS  PubMed  Google Scholar 

  50. Pasvol, G., Wainscoat, J.S.A. and Weatherall, D.J. 1982. Erythrocytes deficient in glycophorin resist invasion by the malarial parasite Plasmodium falciparum. Nature 297: 64–66.

    CAS  PubMed  Google Scholar 

  51. Perkins, M.E. 1984. Binding of glycophorins to P. falciparum merozoites. Mol. Biochem. Parasitol. 10: 67–78.

    CAS  PubMed  Google Scholar 

  52. Perkins, M.E. 1981. Inhibitory effects of erythrocyte membrane proteins on the in vitro invasion of the human malarial parasite Plasmodium falciparum into its host cell. J. Cell Biol. 90: 563–567.

    CAS  PubMed  Google Scholar 

  53. Perkins, M.E. 1984. Surface proteins of Plasmodium falciparum merozoites binding to the erythrocyte receptor, glycophorin. J. Exp. Med. 160: 788–798.

    CAS  PubMed  Google Scholar 

  54. Ravetch, J.V., Kochan, J. and Perkins, M.E. 1985. Isolation of the gene for a glycophorin-binding protein implicated in erythrocyte invasion by a malaria parasite. Science 227: 1593–1597.

    CAS  PubMed  Google Scholar 

  55. Kemp, D.J. et al. 1983. Expression of Plasmodium falciparum blood-stage antigens in E. coli: detection with antibodies from immune humans. Proc. Natl. Acad. Sci. USA 80: 3787–3791.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Koenen, M. et al. 1984. Human antisera detect a Plasmodium falciparum genomic clone encoding a nonapeptide repeat. Nature 311: 789–792.

    Google Scholar 

  57. Ardeshir, F., Flint, J.E. and Reese, R.T. 1985. Expression of P. falciparum surface antigens in E. coli. Proc. Natl. Acad. Sci. USA 82: 2518–2522.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Holder, A.A. and Freeman, R.R. 1982. Biosynthesis and processing of a Plasmodium falciparum schizont antigen recognized by immune serum and monoclonal antibody. J. Exp. Med. 156: 1528–1538.

    CAS  PubMed  Google Scholar 

  59. Perkins, M. 1982. Surface proteins of schizont-infected erythrocytes and merozoites of Plasmodium falciparum. Mol. Biochem. Parasitol. 5: 55–64.

    CAS  PubMed  Google Scholar 

  60. Hall, R. et al. 1983. Antigens of the erythrocytic stages of the human malaria parasite Plasmodium falciparum detected by monoclonal antibodies. Mol. Biochem. Parasitol. 7: 247.

    CAS  PubMed  Google Scholar 

  61. Pirson, P.J. and Perkins, M.E. 1985. Characterization with monoclonal antibodies of a surface antigen of Plasmodium falciparum merozoites. J. Immunol. 134: 1946–1951.

    CAS  PubMed  Google Scholar 

  62. Hall, R. et al. 1984. Processing, polymorphism and biological significance of p190, a major surface antigen of the erythrocytic forms of Plasmodium falciparum. Mol. Biochem. Parasitol. 11: 61–80.

    CAS  PubMed  Google Scholar 

  63. David, P.H., Hadley, T.J., Aikawa, M. and Miller, L.H. 1984. Processing of a major surface glycoprotein occurs during the ultimate stages of differentiation in Plasmodium knowlesi malaria. Mol. Biochem. Parasitol. 11: 267–282.

    CAS  PubMed  Google Scholar 

  64. Holder, A.A. and Freeman, R.R. 1981. Immunization against blood stage rodent malaria using purified parasite antigens. Nature 294: 361–364.

    CAS  PubMed  Google Scholar 

  65. Perrin, L.H. et al. 1984. Antimalarial immunity in Saimiri monkeys: Immunization with surface components of asexual blood stages. J. Exp. Med. 160: 441–451.

    CAS  PubMed  Google Scholar 

  66. Hall, R. et al. 1984. Major surface antigen gene of a human malaria parasite cloned and expressed in bacteria. Nature 311: 379–382.

    CAS  PubMed  Google Scholar 

  67. Odink, K.G. et al. 1984. Expression of cloned cDNA for a major surface antigen of Plasmodium falciparum merozoites. FEBS Lett. 173: 108–112.

    CAS  PubMed  Google Scholar 

  68. Cheung, A., Sharv, A.R., Leban, J. and Perrin, L.H. 1985. Cloning and Expression in E. coli of a surface antigen of Plasmodium falciparum merozoites. EMBO J.. 4: 1007–1012.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Coppel, R.L. et al. 1983. Isolate specific S antigen of Plasmodium falciparum contains a repeated sequence of eleven amino acids. Nature 306: 751–756.

    CAS  PubMed  Google Scholar 

  70. Wilson, R.J.M. et al. 1969. Lancet ii: 201–205.

    Google Scholar 

  71. Cowman, A.F. et al. 1985. Conserved sequences flank variable tandem repeats in two S-antigen genes of Plasmodium falciparum. Cell 40: 775–783.

    CAS  PubMed  Google Scholar 

  72. Perrin, L.H., Ramirez, E., Lambert, P.H. and Miescher, P.A. 1981. Inhibition of P. falciparum growth in human erythrocytes by monoclonal antibodies. Nature 289: 301–303.

    CAS  PubMed  Google Scholar 

  73. Newbold, C. 1984. Mol. Biochem. Parasitol. 11: 1–22.

    CAS  PubMed  Google Scholar 

  74. Jensen, J.B. et al. 1983. Association between human serum-induced crisis forms in cultured P. falciparum and clinical immunity to malaria in Sudan. Infect. Immun. 41: 1302, 1300.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Huff, C.G., Marchbank, D.F. and Shiroishi, T. 1958. Changes in infectiousness of malarial gametes. II. Analysis of the possible causative factors. Exp. Parasitol. 7: 399–417.

    CAS  PubMed  Google Scholar 

  76. Gwadz, R.W. 1976. Malaria: successful immunization against the sexual stages of Plasmodium gallinaceum. Science 193: 1150–1151.

    CAS  PubMed  Google Scholar 

  77. Carter, R. and Chen, D.H. 1976. Malaria transmission blocked by immunization with gametes of the malaria parasite. Nature 263: 57–60.

    CAS  PubMed  Google Scholar 

  78. Carter, R. et al. 1984. Target antigens in malaria transmission blocking immunity. Phil. Trans. R. Soc. Lond. 307: 201–213.

    CAS  Google Scholar 

  79. Rener, J. et al. 1983. Target antigens of transmission blocking immunity on gametes of Plasmodium falciparum. J. Exp. Med. 158: 976–981.

    CAS  PubMed  Google Scholar 

  80. Kaushal, D.C. et al. 1983. Monoclonal antibodies against surface determinants on gametes of Plasmodium gallinaceum block transmission of malaria parasites to mosquitoes. J. Immunol. 131: 2557–2562.

    CAS  PubMed  Google Scholar 

  81. Carter, R. and Kaushal, D.C. 1984. Characterization of antigens on mosquito midgut stages of Plasmodium gallinaceum. III. Changes in zygote surface proteins during transformation to mature ookinete. Mol. Biochem. Parasitol. 13: 235–241.

    CAS  PubMed  Google Scholar 

  82. Schwartz, D.C. and Cantor, C.R. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gel electrophoresis. Cell 37: 67–75.

    CAS  PubMed  Google Scholar 

  83. Kemp, D.J. et al. 1985. Size variation in chromosomes from independent cultured isolates of Plasmodium falciparum. Nature 315: 347–350.

    CAS  PubMed  Google Scholar 

  84. Van de Ploeg, L.H.T. et al. 1985. Science, in press.

    Google Scholar 

  85. Coppel, R.L. 1984. Immune sera recognize on erythrocytes a Plasmodium falciparum antigen composed of repeated amino acid sequences. Nature 310: 789–792.

    CAS  PubMed  Google Scholar 

  86. Stahl, H.D. et al. 1985. Interspersed blocks of repetitive and charged amino acids in a dominant immunogen of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 82: 543–547.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Anderson, R.M. (ed.) 1982. Population Dynamics of Infectious Diseases, Theory and Applications, Chapman and Hall.

    Google Scholar 

  88. Anderson, R.M. and May, R.M. (eds.) 1982. Population Biology of Infectious Diseases, Springer-Verlag Berlin, Heidelberg, New York.

    Google Scholar 

  89. Ross, R. 1904. On the logical basis of the sanitary policy of mosquito reduction. Proceedings of the Congress, Arts, Science, St. Louis, U.S.A. 6: 89. (Also (1905) British Medical Journal 1: 1025–1029).

    Google Scholar 

  90. Ross, R. 1911. The prevention of malaria (2nd ed.), Murray, London.

    Google Scholar 

  91. Macdonald, G. 1952. The analysis of equilibrium in malaria. Tropical Diseases Bulletin, 49: 813–828.

    CAS  PubMed  Google Scholar 

  92. Macdonald, G. 1957. The epidemiology and control of malaria. Oxford University Press, London.

    Google Scholar 

  93. Bradley, D.J. 1982. Epidemiological models—theory and reality, p. 320–361 In: Population Dynamics of Infectious Diseases, Theory and Applications, Anderson, R.M. (ed.). Chapman and Hall.

    Google Scholar 

  94. Molineaux, L., Storey, J., Cohen, J.E. and Thomas, A. 1982. A longitudinal study of human malaria in the West African savanna in the absence of control measures: relationships between P. falciparum and P. malariae. Am. J. Tropical and Medical Hygiene 29: 725–737.

    Google Scholar 

  95. Dietz, K. 1980. Models for vector-borne parasitic diseases. Lecture Notes in Biomathematics 39: 264–277.

    Google Scholar 

  96. Anderson, R.M. 1982. Transmission dynamics and control of infectious disease agents, p. 149–176. In: Population Biology of Infectious Diseases, Anderson, R.M., and May, R.M. (eds.). Springer-Verlag.

    Google Scholar 

  97. Dietz, K. 1982. Overall population patterns in the transmission cycle of infectious disease agents, p. 87–102. In: Population Biology of Infectious Diseases, Anderson, R.M. and May, R.M. (eds.). Springer Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravetch, J., Young, J. & Poste, G. Molecular Genetic Strategies for the Development of Anti-Malarial Vaccines. Nat Biotechnol 3, 729–740 (1985). https://doi.org/10.1038/nbt0885-729

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0885-729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing