Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Effects of Nitrate on Fermentation of Xylose and Glucose by Pachysolen Tannophilus

A Correction to this article was published on 01 October 1983

Abstract

Xylose is a major constituent of hardwood and agricultural residues. Its effective utilization is essential to the economic practicability of any process seeking to use these materials for chemical production. A yeast, Pachysolen tannophilus, has been shown to ferment xylose to ethanol, acetic acid and xylitol, but the rate is slow and yields of ethanol are low. Growth on NO3 is known to stimulate synthesis of pentosephosphate pathway enzymes, and these studies showed that NO3 stimulates the aerobic production of ethanol from xylose by Pachysolen. Anaerobic production of ethanol, however, was inhibited by NO3. Inhibition required induction by growth on NO3, and inhibition was repressed by NH4+, indicating that nitrate reductase might be involved. Growth rates and product ratios were affected significantly by the nitrogen source used. These results suggest that selection for NO3 utilization could be a useful screen in the development of yeast strains with improved ability to ferment xylose.

*Maintained in cooperation with the University of Wiscosin, Madison, Wis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schneider, H., Wang, P.Y., Chang, Y.K. and Maleszka, R. 1981. Conversion of D-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol. Lett. 3: 89–92.

    Article  CAS  Google Scholar 

  2. Slininger, P.J., Bothast, R.J., van Cawenberge, J.E. and Kurtzman, C.P. 1982. Conversion of D-xylose to ethanol by the yeast Pachysolentannophilus. Biotechnol. Bioeng. 24: 371–384.

    Article  CAS  Google Scholar 

  3. Gong, C.-S., McCracken, L.D. and Tsao, G.T. 1981. Direct fermentation of D-xylose to ethanol by a xylose-fermenting yeast mutant, Candida sp. XF 217. Biotechnol. Lett. 3: 245–250.

    Article  CAS  Google Scholar 

  4. Jeffries, T.W. 1981. Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis. Biotechnol. Lett. 3: 213–218.

    Article  CAS  Google Scholar 

  5. Jeffries, T.W. 1982. A comparison of Candida tropicalis and Pachysolen tannophilus for conversion of xylose to ethanol. Biotechnol. Bioeng. Symp. 12: 103–110.

    CAS  Google Scholar 

  6. Margaritis, A. and Bajpai, P. 1982. Direct fermentation of D-xylose to ethanol by Kluyveromyces marxianus strains. Appl. Environ. Microbiol. 44: 1039–1041.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Barnett, J.A. 1976. The utilization of sugars by yeasts. Adv. Carbohyd. Chem. Biochem. 32: 125–234.

    Article  CAS  Google Scholar 

  8. Scheffers, W.A. and Wiken, T.O. 1969. The Custers effect (negative Pasteur effect) as a diagnostic criterion for the genus Brettanomyces. Antonie van Leeuwenhoek 35: A31–32.

    Google Scholar 

  9. Chiang, C. and Knight, S.G. 1960. Metabolism of D-xylose by moulds. Nature 188: 79–81.

    Article  CAS  Google Scholar 

  10. Smiley, K.L. and Bolen, P.L. 1982. Demonstration of D-xylose reductase and D-xylitol dehydrogenase in Pachysolen tannophilus. Biotechnol. Lett. 4: 607–610.

    Article  CAS  Google Scholar 

  11. Gong, C.-S., Chen, L.-F. and Tsao, G.T. 1981. Quantitative production of xylilol from D-xylose by a high-xylitol producing yeast mutant Candida tropicalis HXP2. Biotechnol. Lett. 3: 125–130.

    Article  CAS  Google Scholar 

  12. Osmond, C.B. and Rees, T.A. 1969. Control of the pentose phosphate pathway in yeast. Biochem. Biophys. Acta 184: 35–42.

    Article  CAS  Google Scholar 

  13. Hankinson, O. and Cove, D.J. 1974. Regulation of the pentose phosphate pathway in the fungus Aspergillus nidulans. Biol. Chem. 249: 2344–2353.

    CAS  Google Scholar 

  14. Jessup, W. and Fowler, M.W. 1977. Interrelationships between carbohydrate metabolism and nitrogen assimilation in cultured plant cells. Planta 137: 71–76.

    Article  CAS  Google Scholar 

  15. Zaunder, E., Schlanderer, G., Held, W. and Dellweg, H. 1980. Growth of the yeast Hansenula anomala with nitrate as sole source of nitrogen under aerobic and anaerobic conditions. Biotechnol. Lett. 1: 315–320.

    Article  Google Scholar 

  16. Maleszka, R. and Schneider, H. 1982. Concurrent production and consumption of ethanol by cultures of Pachysolen tannophilus growing on D-xylose. Appl. Environ. Microbiol. 44: 909–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Maleszka, R., Wang, P.Y. and Schneider, H. 1982. Elhanol production from D-galactose and glycerol by Pachysolen tannophilus. Enzyme Microbial Technol. 4: 349–352.

    Article  CAS  Google Scholar 

  18. Sims, A.P. and Barnett, J.A. 1978. The requirement of oxygen for the utilization of maltose, cellobiose and D-galactose by certain anaero bically fermenting yeasts (Kluyver effect). J. Gen. Microbiol. 106: 227–288.

    Article  Google Scholar 

  19. Barnett, J.A. and Sims, A.P. 1982. The requirement of oxygen for the active transport of sugars into yeasts. J. Gen. Microbiol. 128: 2303–2312.

    CAS  Google Scholar 

  20. Fiechter, A., Fuhrmann, G.F. and Käppeli, O. 1981. Regulation of glucose metabolism in growing yeast cells. Advan. Microbiol. Physiol. 22: 123–183.

    Article  CAS  Google Scholar 

  21. Burn, V.J., Turner, P.R. and Brown, C.M. 1974. Aspects of inorganic nitrogen assimilation in yeasts. Antonie van Leeuwenhoek 40: 93–102.

    Article  CAS  Google Scholar 

  22. Cove, D.J. and Pateman, J.A. 1969. Autoregulation of the synthesis of nitrate reductase in Aspergillus nidulans. J. Bacteriol. 97: 1374–1378.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dunn-Coleman, N.S. and Pateman, J.A. 1975. The regulation of nitrate reductase in the fungus Aspergillus nidulans. Biochem. Soc. Trans. 3: 531–533.

    Article  CAS  Google Scholar 

  24. Dunn-Coleman, N.S. and Pateman, J.A. 1977. In vivo and in vitro studies of nitrate reductase regulation in Aspergillus nidulans. Mol. Gen. Genet. 152: 285–293.

    Article  CAS  Google Scholar 

  25. Kaneko, M. and Ishimoto, M. 1977. Effect of nitrate reduction on metabolic products and growth of Propionibacterium acidi-propionici. Z. Allg. Mikrobiol. 17: 211–220.

    Article  CAS  Google Scholar 

  26. Ishimoto, M. and Yamamoto, I. 1977. Cell growth and metabolic products of Escherichia coli in nitrate respiration. Z. Allg. Mikrobiol. 17: 309–320.

    Article  CAS  Google Scholar 

  27. Pinchinoty, F. 1973. La réduction bactérienne des composés oxygénés minéraux de l'azote. Bull. l'Instit. Pasteur 71: 317–395.

    Google Scholar 

  28. Haddock, B.A. and Jones, C.W. 1977. Bacterial respiration. Bacteriol. Rev. 41: 49–99.

    Google Scholar 

  29. Clark, D. and Cronan, J.E., Jr., 1980. Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. J. Bacteriol. 141: 177–183.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Verhaar, L.A.Th. and Kuster, B.F.M. 1981. Improved column efficiency in chromatographic analysis of sugars on cation-exchange resins by use of water-triethylamine eluents. J. Chromatog. 210: 279–290.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeffries, T. Effects of Nitrate on Fermentation of Xylose and Glucose by Pachysolen Tannophilus. Nat Biotechnol 1, 503–506 (1983). https://doi.org/10.1038/nbt0883-503

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0883-503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing