Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit

Abstract

Transgenic tomato plants overexpressing a vacuolar Na+/H+ antiport were able to grow, flower and produce fruit in the presence of 200 mM sodium chloride. Although the leaves accumulated high sodium concentrations, the tomato fruit displayed very low sodium content. Contrary to the notion that multiple traits introduced by breeding into crop plants are needed to obtain salt-tolerant plants, the modification of a single trait significantly improved the salinity tolerance of this crop plant. These results demonstrate that with a combination of breeding and transgenic plants it could be possible to produce salt-tolerant crops with far fewer target traits than had been anticipated. The accumulation of sodium in the leaves and not in the fruit demonstrates the utility of such a modification in preserving the quality of the fruit.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Yeo, A.R., Yeo, M.E., Flowers, S.A. & Flowers, T.J. Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance and their relationship to overall performance. Theor. Appl. Genet. 79, 377–384 (1988).

    Article  Google Scholar 

  2. Cuartero, J. & Fernandez-Muñoz, R. Tomato and salinity. Sci. Hortic. 78, 83–125 (1999).

    CAS  Article  Google Scholar 

  3. Zhu, J.-K. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 124, 941–948 (2000).

    CAS  Article  Google Scholar 

  4. Apse, M.P., Aharon, G.S., Snedden, W.S. & Blumwald, E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285, 1256–1258 (1999).

    CAS  Article  Google Scholar 

  5. Blumwald, E. & Poole, R.J. Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris . Plant Physiol. 78, 163–167 (1985).

    CAS  Article  Google Scholar 

  6. Blumwald, E. & Gelli, A. Secondary inorganic ion transport in plant vacuoles. Adv. Bot. Res. 25, 401–407 (1997).

    CAS  Article  Google Scholar 

  7. Rea, P.A. & Sanders, D. Tonoplast energyzation: two H+-pumps, one membrane. Physiol. Plant. 71, 131–141 (1987).

    CAS  Article  Google Scholar 

  8. Drozdowicz, Y.M. et al. A thermostable vacuolar-type membrane pyrophosphatase from the archeon Pyrobaculum aerophilum: implications for the origins of pyrophosphatase-energized pumps. FEBS Lett. 460, 505–512 (1999).

    CAS  Article  Google Scholar 

  9. Marschner, H. Mineral nutrition of higher plants. (Academic Press, New York; 1995).

    Google Scholar 

  10. Walker, D.J., Leigh, R.A. & Miller, A.J. Potassium homeostasis in vacuolate plant cells. Proc. Natl. Acad. Sci. USA 93, 10510–10514 (1996).

    CAS  Article  Google Scholar 

  11. Leigh, R.A. & Wynn Jones, R.G. A hypothesis relating critical potassium concentrations for growth and distribution and functions of this ion in the plant cell. New Phytol. 97, 1–13 (1984).

    CAS  Article  Google Scholar 

  12. Maathuis, F.J.M. & Amtmann, A. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann. Bot. 84, 123–133 (1999).

    CAS  Article  Google Scholar 

  13. Munro, A.W., Ritchi, G.Y., Lamb, R.M., Douglas, R.M., & Booth, I.R. The cloning and DNA sequence of the gene for the glutathion-regulated potassium-efflux system KefC of Escherichia coli . Mol. Microbiol. 5, 607–616 (1991).

    CAS  Article  Google Scholar 

  14. Ramirez, J., Ramirez, O., Saldana, C., Coria, R., & Pena, A. A Saccharomyces cerevisiae mutant lacking a K+/H+ exchanger. J. Bacteriol. 180, 5860–5865 (1998).

    CAS  Article  Google Scholar 

  15. Czonka, L.N. & Hanson, A.D. Prokaryotic osmoregulation: genetics and physiology. Annu. Rev. Microbiol. 45, 569–606 (1991).

    Article  Google Scholar 

  16. Schobert, B. Is there an osmotic regulatory mechanism in algae and higher plants? J. Theor. Biol. 68, 17–26 (1977).

    CAS  Article  Google Scholar 

  17. LeRudulier, D., Strom, A.R., Dandekar, A.M., Smith, L.T. & Valentine, R.C. Molecular biology of osmoregulation. Science 224, 1064–1068.

  18. Yancey, P., Clark, M., Hand, S., Bowlus, R. & Somero, G. Living with water stress: evolution of osmolyte systems. Science 217, 1214–1222 (1982).

    CAS  Article  Google Scholar 

  19. Smirnoff, N. & Cumbes, Q.J. Hydroxyl radial scavenging activity of compatible solutes. Phytochemistry 28, 1057–1060 (1989).

    CAS  Article  Google Scholar 

  20. Kishor, P.B.K., Hong, Z., Miao, G.-H., Hu, C.-A. A. & Verma, D.P.S. Overexpression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108, 1387–1394 (1995).

    CAS  Article  Google Scholar 

  21. Nanjo, T. et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana . FEBS Lett. 461, 205–210 (1999).

    CAS  Article  Google Scholar 

  22. Ehret, D.L. & Ho, L.C. Effects of osmotic potential in nutrient solution on diurnal growth of tomato fruit. J. Exp. Bot. 37, 1294–1302 (1986).

    Article  Google Scholar 

  23. Lee, D.R. A vasculature of the abscission zone of tomato fruit: implications for transport. Can. J. Bot. 67, 1898–1902.

    Article  Google Scholar 

  24. Davies, W.J., Bacon, M.A., Thompson, D.S., Sobeih, W. & Rodriguez, L.G. Regulation of leaf and fruit growth in plants growing in drying soil: exploitation of the plants' chemical signalling system and hydraulic architecture to increase the efficiency of water use in agriculture. J. Exp. Bot. 51, 1617–1626 (2000).

    CAS  Article  Google Scholar 

  25. Ghassemi, F., Jakeman, A. & Nix, H. Salinization of land and water resources: human causes, extent, management and case studies. (University of South Wales Press, Sydney; 1995).

  26. Jefferson, R.A., Kavanagh, T.A. & Bevan, M.W. GUS fusions: beta-glucoronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907 (1987).

    CAS  Article  Google Scholar 

  27. Thomas, B.R. & Pratt, D. Efficient hybridization between Lycopersicon esculentum and L. peruvianum via embryo callus. Theor. Appl. Genet. 59, 215–219 (1981).

    CAS  Article  Google Scholar 

  28. Dubois, M., Gilles, R.A., Hamilton, J.K., Roberts, P.A. & Smith, F. Colorimetric method for determination of sugar and related substances. Anal. Chem. 28, 350–356 (1956).

    CAS  Article  Google Scholar 

  29. Bates, L.S., Waldren, R.P. & Teare, I.D. Rapid determination of proline for water-stress studies. Plant & Soil 39, 205–207 (1973).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank V.J. Higgins and M.P. Apse for helpful discussions. The work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (E.B.) and by the Will W. Lester Endowment from the University of California (E.B.).

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, HX., Blumwald, E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19, 765–768 (2001). https://doi.org/10.1038/90824

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing