Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Removal of Sialic Acid from a Glycoprotein in CHO Cell Culture Supernatant by Action of an Extracellular CHO Cell Sialidase

Abstract

We have directly tested the hypothesis that Chinese hamster ovary (CHO) cell-produced glycoproteins are subject to extracellular degradation by a sialidase endogenous to the CHO cell line. Factors important to understanding the potential for extracellular degradation are addressed including the glycoprotein specificity, subcellular source, mechanism of release, and stability of the sialidase activity. The extracellular CHO cell sialidase apparently originates from the cytosol of the cells, and is released to the cell culture supernatant as a result of damage to the cellular membrane. The extracellular sialidase is active toward a variety of CHO cell-produced glycoproteins, and can hydrolyze sialic acid from the recombinant glycoprotein gp120 in the culture supernatant. While measuring the actual degradation of a glycoprotein by extracellular CHO cell sialidase can be difficult, data presented here suggest that the level of degradation can be estimated indirectly by using a more convenient fluorescent substrate, 4-methylumbelliferyl-α-D-N-acetylneuraminic acid, to quantify sialidase activity. Degradation by sialidase is minimized through addition of the sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid to the culture supernatant. The results in this study suggest additional potential approaches for minimizing degradation by sialidase, including isolation of a sialidase-deficient CHO cell line.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Spellman, M.W., Leonard, C.K., Basa, L.J., Gelineo, I. and van Halbeek, H. 1991. Carbohydrate structure of recombinant soluble human CD4 expressed in Chinese hamster ovary cells. Biochemistry 30: 2395–2406.

    Article  CAS  Google Scholar 

  2. Mizuochi, T., Spellman, M.W., Larkin, M., Solomon, J., Basa, L. and Feizi, T. 1988b. Carbohydrate structures of the human-immunodeficiency-virus (HIV) recombinant envelope glycoprotein gpl20 produced in Chinese hamster ovary cells. Biochem. J. 254: 599–603.

    Article  CAS  Google Scholar 

  3. Varki, A. 1993. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3: 97–130.

    Article  CAS  Google Scholar 

  4. Goochee, C.F., Gramer, M.J., Andersen, D.C., Bahr, J.B. and Rasmussen, J.R. 1991. The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Bio/Technology 9: 1347–1355.

    Article  CAS  Google Scholar 

  5. Goochee, C.F., Gramer, M.J., Andersen, D.C., Bahr, J.B. and Rasmussen, J.R. 1992. The oligosaccharides of glycoproteins: factors affecting their synthesis and their influence on glycoprotein properties, p. 199–240. In: Frontiers in Bioprocessing II, Todd, P., Sikdar, S. K. and Bier, M. (Eds.). American Chemical Society, Washington, DC.

    Google Scholar 

  6. Miyagi, T., Hata, K., Hasegawa, A. and Aoyagi, T. 1993. Differential effect of various inhibitors on four types of rat sialidase. Glycoconjugate J. 10: 45–49.

    Article  CAS  Google Scholar 

  7. Miyagi, T., Sagawa, J., Konno, K. and Tsuiki, S. 1990. Immunological discrimination of intralysosomal, cytosolic, and two membrane sialidases in rat tissues. J. Biochem. 107: 794–798.

    Article  CAS  Google Scholar 

  8. Miyagi, T., Sagawa, J., Konno, K., Handa, S. and Tsuiki, S. 1990. Biochemical and immunological studies on two distinct ganglioside-hydrolyzing sialidases from the paniculate fraction of rat brain. J. Biochem. 107: 787–793.

    Article  CAS  Google Scholar 

  9. Conzelmann, E. and Sandhoff, K. 1987. Glycolipid and glycoprotein degradation. Adv. Enzymol. 60: 89–216.

    CAS  PubMed  Google Scholar 

  10. Potier, M., Beauregard, G., Belisle, M., Mameli, L., Nguyen Hong, V., Melancon, S.B. and Dallaire, L. 1979. Neuraminidase activity in the mucolipidoses (types I, II and III) and the cherry-red spot myoclonus syndrome. Clin. Chim. Acta. 99: 97–105.

    Article  CAS  Google Scholar 

  11. Den Tandt, W.R. and Leroy, J.G. 1980. Deficiency of neuraminidase in the sialidoses and the mucolipidoses. Hum. Genet. 53: 383–388.

    Article  CAS  Google Scholar 

  12. Nguyen Hong, V., Beauregard, G., Potier, M., Belisle, M., Mameli, L., Gatti, R. and Durand, P. 1980. Studies on the sialidoses: properties of human leukocyte neuraminidases. Biochim. Biophys. Acta. 616: 259–270.

    Article  Google Scholar 

  13. Hiraiwa, M., Uda, Y., Nishizawa, M. and Miyatake, T. 1987. Human placental sialidase: partial purification and characterization. J. Biochem. 101: 1273–1279.

    Article  CAS  Google Scholar 

  14. Spaltro, J. and Alhadeff, J.A. 1984. Solubilization, stabilization, and iso-electric focusing of human liver neuraminidase activity. Biochim. Biopys. Acta. 800: 159–165.

    Article  CAS  Google Scholar 

  15. Schauer, R. and Wember, M. 1984. Isolation and characterization of an oligosaccharide- and glycoprotein-specific sialidase from human leucocytes. Hoppe-Seyler's Z. Physiol. Chem. 365: 419–426.

    Article  CAS  Google Scholar 

  16. Potier, M., Mameli, L., Belisle, M., Dallaire, L. and Melancon, S.B. 1979. Fluorometric assay of neuramindase with a sodium (4-methylumbelliferyl-α-D-N-acetylneuraminate) substrate. Anal. Biochem. 94: 287–296.

    Article  CAS  Google Scholar 

  17. Sato, A., Hiramatsu, M., Kashimata, M., Murayama, M., Minami, N. and Minami, N. Characteristics of sialidase in the rat salivary glands. Enzyme 41: 200–208.

    Article  CAS  Google Scholar 

  18. Warner, T.G. and O'Brien, J.S. 1979. Synthesis of 2′-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid and detection of skin fibroblast neuraminidase in normal humans and in sialidosis. Biochemistry 18: 2783–2787.

    Article  CAS  Google Scholar 

  19. Usuki, S., Lyu, S.-C. and Sweeley, C.C. 1988. Sialidase activities of cultured human fibroblasts and the metabolism of GM3 ganglioside. J. Biol. Chem. 263: 6847–6853.

    CAS  PubMed  Google Scholar 

  20. Sweeley, C.C. 1993. Extracellular sialidases. Adv. Lipid Res. 26: 235–252.

    CAS  PubMed  Google Scholar 

  21. Gramer, M.J. and Goochee, C.F. 1993. Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Biotech. Prog. 9: 366–373.

    Article  CAS  Google Scholar 

  22. Warner, T.G., Chang, J., Ferrari, J., Harris, R., McNerney, T., Bennett, G., Buraier, J. and Sliwkowski, M.B. 1993. Isolation and properties of a soluble sialidase from the culture fluid of Chinese hamster ovary cells. Glycobiology 3: 455–463.

    Article  CAS  Google Scholar 

  23. Miyagi, T. and Tsuiki, S. 1985. Purification and characterization of cytosolic sialidase from rat liver. J. Biol. Chem. 260: 6710–6716.

    CAS  PubMed  Google Scholar 

  24. Miyagi, T., Konno, K., Emori, Y., Kawasaki, H., Suzuki, K., Yasui, A. and Tsuiki, S. 1993b. Molecular cloning and expression of cDNA encoding rat skeletal muscle cytosolic sialidase. J. Biol. Chem. 269: 26435–26440.

    Google Scholar 

  25. Leonard, C.K., Spellman, M.W., Riddle, L., Harris, R.J., Thomas, J.N. and Gregory, T.J. 1990. Assignment of intrachain disulflde bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gpl20) expressed in Chinese hamster ovary cells. J. Biol. Chem. 265: 10373–10382.

    CAS  Google Scholar 

  26. Leger, D., Campion, B., Decottignies, J.-P., Montreuil, J. and Spik, G. 1989. Physiological significance of the marked increased branching of the glycans of human serotransferrin during pregnancy. Biochem. J. 257: 231–238.

    Article  CAS  Google Scholar 

  27. Green, E.D., Adelt, G., Baenziger, J.U., Wilson, S. and Van Halbeek, H. 1988. The asparagine-linked oligosaccharides on bovine fetuin. J. Biol. Chem. 263: 18253–18268.

    CAS  PubMed  Google Scholar 

  28. Spiro, R.G. 1960. Studies on fetuin, a glycoprotein of fetal serum. J. Biol. Chem. 235: 2860–2869.

    CAS  PubMed  Google Scholar 

  29. Spiro, R.G. and Bhoyroo, V.D. 1974. Structure of the O-glycosidically linked carbohydrate units of fetuin. J. Biol. Chem. 249: 5704–5717.

    CAS  PubMed  Google Scholar 

  30. Bendiak, B., Harris-Brandts, M., Michnick, S.W., Carver, J.P. and Cummings, D.A. 1989. Title? Biochemistry 28: 6491–6499.

    Article  CAS  Google Scholar 

  31. Cummings, D.A., Hellerqvist, C.G., Harris-Brandts, M., Michinick, S.W., Carver, J.P. and Bendiak, B. 1989. Structures of asparagine-linked oligosaccharides of the glycoprotein fetuin having sialic acid linked to N-acetylglu-cosamine. Biochemistry. 28: 6500–6512.

    Article  Google Scholar 

  32. Robbins, A.R. 1979. Isolation of lysosomal α-mannosidase mutants of Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 76: 1911–1915.

    Article  CAS  Google Scholar 

  33. Gramer, M.J. and Goochee, C.F. 1994. Glycosidase activities of the 293 and NS0 cell lines, and of an antibody-producing hybridoma cell line. Biotech. Bioeng. 43: 423–428.

    Article  CAS  Google Scholar 

  34. Myerowitz, R., Robbins, A.R., Proia, R.L., Sahagian, G.G., Puchalski, C.M. and Neufeld, E.F. 1983. Studies of lysosomal enzyme biosynthesis in cultured cells. Meth. Enzymol. 96: 729–736.

    Article  CAS  Google Scholar 

  35. Seglen, P.O. 1983. Inhibitors of lysosomal function. Meth. Enzymol. 96: 737–764.

    Article  CAS  Google Scholar 

  36. Watson, E., Shah, B., Leiderman, L., Hsu, Y.-R., Karkare, S., Lu, H.S. and Lin, F.-K. 1994. Comparison of N-linked oligosaccharides of recombinant human tissue kallikrein produced by Chinese hamster ovary cells on microcarrier beads and in serum-free suspension culture. Biotech. Prog. 10: 39–44.

    Article  CAS  Google Scholar 

  37. Szkudlinski, M.W., Thotakura, N.R., Bucci, I., Joshi, L.R., Tsai, A., East-Palmer, J., Shiloach, J. and Weintraub, B.D. 1993. Purification and characterization of recombinant human thyrotropin (TSH) isoforms produced by Chinese hamster ovary cells: the role of siarylation and sulfation in TSH bioactivity. Endrocrinology 133: 1490–1503.

    Article  CAS  Google Scholar 

  38. Robinson, D.K., Chan, C.P., Yu, I.C., Tsai, P.K., Tung, J., Seamans, T.C., Lenny, A.B., Lee, D.K., Irwin, J. and Silberklang, M. 1994. Characterization of a recombinant antibody produced in the course of a high yield fed-batch process. Biotech. Bioeng. 44: 727–735.

    Article  CAS  Google Scholar 

  39. Monica, T.J., Goochee, C.F. and Maiorella, B.L. 1993. Comparative biochemical characterization of a human IgM produced in both ascites and in vitro cell culture. Bio/Technology 11: 512–515.

    CAS  PubMed  Google Scholar 

  40. Lund, J., Takahashi, N., Nakagawa, H., Goodall, M., Bentley, T., Hindley, S.A., Tyler, R. and Jefferis, R. 1993. Control of IgG/Fc glycosylation: a comparison of oligosaccharides from chimeric human/mouse and mouse subclass immunbglobulin Gs. Mol. Immunol. 30: 741–748.

    Article  CAS  Google Scholar 

  41. Patel, T.P., Parekh, R.B., Moellering, B.J. and Prior, C.P. 1992. Different culture methods lead to differences in glycosylation of a murine IgG monoclonal antibody. Biochem. J. 285: 839–845.

    Article  CAS  Google Scholar 

  42. Maiorella, B.L., Winkelhake, J., Young, J., Moyer, B., Bauer, R., Hora, M., Andya, J., Thomson, J., Patel, T. and Parekh, R. 1993. Effect of culture conditions on IgM antibody structure, pharmacokinetics, and activity. Bio/Technology 11: 387–392.

    Article  CAS  Google Scholar 

  43. Goochee, C.F. and Monica, T. 1990. Environmental effects on protein glycosylation. Bio/Technology 8: 421–427.

    CAS  Google Scholar 

  44. Hahn, T.J. and Goochee, C.F. 1992. Growth-associated glycosylation of transferrin secreted by HepG2 cells. J. Biol. Chem. 267: 23982–23987.

    CAS  PubMed  Google Scholar 

  45. Hayter, P.M., Curling, E.M.A., Baines, A.J., Jenkins, N., Salmon, I., Strange, P.G., Tong, J.M. and Bull, A.T. 1992. Glucose-limited chemostat culture of Chinese hamster ovary cells producing recombinant human interferon-γ. Biotech. Bioeng. 39: 327–335.

    Article  CAS  Google Scholar 

  46. Andersen, D.C., Goochee, C.F., Cooper, G. and Weitzhandler, M. 1994. Monosaccharide and oligosaccharide analysis of isoelectric focusing-separated and blotted granulocyte colony-stimulating factor glycoforms using high-pH anion-exchange chromatography with pulsed amperometric detection. Glycobiology 4: 459–467

    Article  CAS  Google Scholar 

  47. Borys, M.C., Linzer, D.H. and Papoutsakis, E.T. 1994. Ammonia affects the glycosylation patterns of recombinant mouse placental lactogen-I by Chinese hamster ovary cells in a pH-dependent manner. Biotech. Bioeng. 43: 505–514.

    Article  CAS  Google Scholar 

  48. Gramer, M.J., Schaffer, D.V., Sliwkowski, M.B. and Goochee, C.F. 1994. Purification and characterization of fucosidase from Chinese hamster ovary cell culture supernatant. Glycobiology 4: 611–616.

    Article  CAS  Google Scholar 

  49. Simonsen, C.C. and Levinson, A.D. 1983. Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc. Natl. Acad. Sci. USA 80: 2495–2499.

    Article  CAS  Google Scholar 

  50. Skoza, L. and Mohos, S. 1976. Stable thiobarbituric acid chromophore with dimethly sulphoxide Biochem. J. 159: 457–462.

    Article  CAS  Google Scholar 

  51. Harms, E., Kern, H. and Schneider, J.A. 1980. Human lysosomes can be purified from diploid skin fibroblasts by free-flow electrophoresis. Proc. Natl. Acad. Sci, USA 77: 6139–6143.

    Article  CAS  Google Scholar 

  52. Pesce, A., McKay, R.H., Stolzenbach, F., Cahn, R.D. and Kaplan, N.O. 1964. The comparative enzymology of lactic dehydrogenases. J. Biol. Chem. 239: 1753–1761.

    CAS  PubMed  Google Scholar 

  53. Sliwkowski, M.B. and Cox, E.T. 1991. Assay requirements for cell culture process development, p 179–205. In: Large-Scale Mammalian Cell Culture Technology, Lubiniecki, A. S. (Ed.). Marcel Dekker, New York.

    Google Scholar 

  54. Ohlson, S., Hannson, L., Larsson, P.L. and Mosbach, K. 1978. High performance liquid affinity chromatography (HPLAC) and its applications to the separation of enzymes and antigens. Febs. Lett. 93: 5–9.

    Article  CAS  Google Scholar 

  55. Roy, S.K., Weber, D.V. and McGregor, W.C. 1984. High performance immunoadsorbant purification of recombinant leukocyte A interferon. J. Chromatog. 303: 225–228.

    Article  CAS  Google Scholar 

  56. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  57. Robbins, A.R. and Roff, C. 1987. Isolation of mutant Chinese hamster ovary cells defective in endocytosis. Meth. Enzymol. 138: 458–470.

    Article  CAS  Google Scholar 

  58. Raetz, C.R.H., Wermuth, M.M., McIntyre, T.M., Esko, J.D. and Wing, D.C. 1982. Somatic cell cloning in polyester stacks. Proc. Natl. Acad. Sci. USA 79: 3223–3227.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gramer, M., Goochee, C., Chock, V. et al. Removal of Sialic Acid from a Glycoprotein in CHO Cell Culture Supernatant by Action of an Extracellular CHO Cell Sialidase. Nat Biotechnol 13, 692–698 (1995). https://doi.org/10.1038/nbt0795-692

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0795-692

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing