Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Directed Evolution of a Subtilisin with Calcium-Independent Stability

Abstract

Extracellular proteases of the subtilisin-class depend upon calcium for stability. Calcium binding stabilizes these proteins in natural extracellular environments, but is an Achilles' heel in industrial environments which contain high concentrations of metal chelators. Here we direct the evolution of calcium-independent stability hi subtilisin BPN′. By deleting the calcium binding loop from subtilisin, we initially destabilize the protein but create the potential to use new structural solutions for stabilization. Analysis of the structure and stability of the loop-deleted prototype followed by directed mutagenesis and selection for increased stability resulted in a subtilisin mutant with native-like proteolytic activity but 1000-times greater stability in strongly chelating conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Siezen, R.J., de Vos, W.M., Leunissen, J.A.M. and Dijkstra, B.W. 1991. Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Engineering 4: 719–737.

    Article  CAS  Google Scholar 

  2. Betzel, Ch., Kupsch, S., Papendorf, G., Hastrup, S., Branner, S. and Wilson, K.S. 1992. Crystal structure of the alkaline proteinase Savinase from Bacillus lentus at 1.4Å resolution. J. Mol. Biol. 223: 427–445.

    Article  CAS  Google Scholar 

  3. Bode, W., Papamokos, E. and Musil, D. 1987. The hgh resolution x-ray structure of the complex formed between subtilism Carlsberg and Eglin C, an elastase inhibitor from the leech Hirudo Medicinalis. Eur. J. Biochem. 166: 673–692.

    Article  CAS  Google Scholar 

  4. Gros, P., Kalk, K.H. and Hol, W.G.J. 1991. Calcium binding to Thermitase. J. Biol. Chem. 266: 2953–2961.

    CAS  PubMed  Google Scholar 

  5. McPhalen, C.A. and James, M.N.G. 1988. Structural comparison of two serine proteinase-protein inhibitor complexes: Eglin-C-Subtilisin Carlsberg and CI-2-Subtilisin novo. Biochemistry 27: 6582–6598.

    Article  CAS  Google Scholar 

  6. Bryan, P., Alexander, P., Strausberg, S., Schwarz, F., Wang, L., Gilliland, G. and Gallagher, D.T. 1992. Energetics of folding subtilisin BPN′. Biochemistry 31: 4937–4945.

    Article  CAS  Google Scholar 

  7. Schelhran, J.A. 1975. Macromolecular binding. Biopolymers l4: S99–1018.

    Google Scholar 

  8. Voordouw, G., Milo, C. and Roche, R.S. 1976. Role of bound calcium in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability. Biochemistry 15: 3716–3724.

    Article  CAS  Google Scholar 

  9. Gallagher, T.D., Bryan, P. and Gilliland, G. 1993. Calcium-free subtilisin by design. Proteins: Str. Funct. Gen. 16: 205–213.

    Article  CAS  Google Scholar 

  10. Pantoliano, M.W., Whitlow, M., Wood, J.F., Dodd, S.W., Hardman, K.D., Rollence, M.L. and Bryan, P.N. 1989. Large increases in general stability for Subtilisin BPN′ through incremental changes in the free energy of unfolding. Biochemistry 28: 7205–7213.

    Article  CAS  Google Scholar 

  11. Pantoliano, M.W., Whitlow, M., Wood, J.F., Rollence, M.L., Finzel, B.C., Gilliland, G., Poulos, T.L. and Bryan, P. N. 1988. The engineering of binding affinity at metal ion binding sites for the stabilization of proteins: Subtilisin as a test case. Biochemistry. 27: 8311–8317.

    Article  CAS  Google Scholar 

  12. Bryan, P.N., Rollence, M.L., Pantoliano, M.W., Wood, J., Finzel, B.C., Gilliland, G.L., Howard, A.J. and Poulos, T.L. 1986. Proteases of enhanced stability: characterization of a thermostable variant of subtilisin. Proteins: Str. Funct. Gen. 1: 326–334.

    Article  CAS  Google Scholar 

  13. Bryan, P., Pantoliano, M.W., Quill, S.G., Hsiao, H.Y. and Poulos, T. 1986. Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Proc. Natl. Acad. Sci. USA. 83: 3743–3745.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip N. Bryan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strausberg, S., Alexander, P., Gallagher, D. et al. Directed Evolution of a Subtilisin with Calcium-Independent Stability. Nat Biotechnol 13, 669–673 (1995). https://doi.org/10.1038/nbt0795-669

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0795-669

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing