Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

High Level Expression of Tissue Inhibitor of Metalloproteinases in Chinese Hamster Ovary Cells Using Glutamine Synthetase Gene Amplification

Abstract

We have used a glutamine synthetase (GS) gene as an amplifiable marker in Chinese hamster ovary (CHO) cells. GS was combined with an efficient transcription unit to produce tissue inhibitor of metalloproteinases (TIMP). Initial transfectant cell-lines selected using a GS gene secreted up to 9μg TIMP/106 cells/24h. After one round of GS gene amplification expression levels of 110μg TIMP/106 cells/24h were achieved. These GS gene amplified CHO cells, when adapted to grow in suspension, accumulated 180mg/l in shake flask culture. This system therefore provides a rapid method of achieving high level gene expression in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Subramani, S., Mulligan, R. and Berg, P. 1981. Expression of the mouse dihydrofolate reductase complementary DNA in SV40 vectors. Mol. Cell. Biol. 1: 854–864.

    Article  CAS  Google Scholar 

  2. Crouse, G.F., McEwan, R.N. and Pearson, M.L. 1983. Expression and amplification of engineered mouse dihydrofolate reductase mini-genes. Mol. Cell. Biol. 3: 257–266.

    Article  CAS  Google Scholar 

  3. Murray, M.J., Kaufman, R.J., Latt, S.A. and Weinberg, R.A. 1983. Construction and use of a dominant, selectable marker: a Harvey Sarcoma Virus-dihydrofolate reductase chimera. Mol. Cell. Biol. 3: 32–43.

    Article  CAS  Google Scholar 

  4. Simonsen, C.C. and Levinson, A.D. 1983 Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc. Natl. Acad. Sci. U.S.A. 80: 2495–2499.

    Article  CAS  Google Scholar 

  5. de Saint Vincent, B.R., Delbruck, S., Eckhart, W., Meinkoth, J., Vitto, L. and Wahl, G. 1981. The cloning and reintroduction into animal cells of a functional CAD gene, a dominant amplifiable genetic marker. Cell 27: 267–277.

    Article  CAS  Google Scholar 

  6. Ruiz, J.C. and Wahl, G.M. 1986. Escherichia coli aspartate transcarbamylase: a novel marker for studies of gene amplification and expression in mammalian cells. Mol. Cell. Biol. 6: 3050–3058.

    Article  CAS  Google Scholar 

  7. Cartier, M., Chang, M.W. and Stanners, C.P. 1987. Use of the E. coli gene for asparagine synthetase as a selective marker in a shuttle vector capable of dominant transfection and amplification in animal cells. Mol. Cell. Biol. 7: 1623–1628.

    Article  CAS  Google Scholar 

  8. Hamer, D.H. and Walling, M.J. 1982. Regulation in vivo of a cloned mammalian gene: Cadmium induces the transcription of a mouse metallothionein gene in SV40 vectors. J. Mol. Appl. Genet. 1: 273–288.

    CAS  PubMed  Google Scholar 

  9. Kaufman, R.J., Murtha, P., Ingolia, D.E., Yeung, C. and Kellems, R.E. 1986. Selection and amplification of heterologous genes encoding adenosine deaminase in mammalian cells. Proc. Natl. Acad. Sci. USA 83: 3136–3140.

    Article  CAS  Google Scholar 

  10. Roberts, J.M. and Axel, R. 1982. Amplification and correction of transformed genes. In: Gene Amplification. Schimke, R. (Ed.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  11. Friedman, J.S., Cofer, C.L., Anderson, C.L., Kushner, J.A., Gray, P.P., Chapman, G.E., Stuart, M.C., Lazarus, L., Shine, J. and Kushner, P.J. 1989. High expression in mammalian cells without amplification. Bio/Technology 7: 359–362.

    CAS  Google Scholar 

  12. Israel, N., Chenciner, N. and Streeck, R.E. 1987. Amplifiable expression vectors for mammalian cell-lines. Gene 51: 197–204.

    Article  CAS  Google Scholar 

  13. Bebbington, C.R. and Hentschel, C.C.G. 1987. The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells, p. 163–188. In: DNA Cloning, Volume III D. Glover (Ed.). Academic Press, NY.

    Google Scholar 

  14. Docherty, A., Lyons, A., Smith, B., Wright, E., Stephens, P. and Harris, T. 1985. Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature 318: 66–69.

    Article  CAS  Google Scholar 

  15. Gorman, C. 1985. High efficiency gene transfer into Mammalian cells, p. 143–190. In: DNA Cloning, Volume II. D. Glover (Ed.). Academic Press, NY.

    Google Scholar 

  16. Kozak, M. 1988. A profusion of controls. J. Cell. Biol. 107: 1–7.

    Article  CAS  Google Scholar 

  17. Laimins, L.A., Khoury, G., Gorman, C., Howard, B. and Gruss, P. 1982. Host-specific activation of transcription by tandem repeats from simian virus 40 and Moloney murina sarcoma virus. Proc. Nat. Acad. Sci. USA 79: 6453–6457.

    Article  CAS  Google Scholar 

  18. Thomsen, D.R., Stenberg, R.M., Goins, W.F. and Stinski, M.F. 1984. Promoter-regulatory region of the major immediate early gene of human cytomegalovirus. Proc. Natl. Acad. Sci., USA 81: 659–663.

    Article  CAS  Google Scholar 

  19. Stenberg, R.M., Thomsen, D.R. and Stinski, M.F. 1984. Structural analysis of the major immediate early gene of human cytomegalovirus. J. Virol. 49: 190–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kozak, M. 1987. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196: 947–950.

    Article  CAS  Google Scholar 

  21. Stephens, P.E. and Cockett, M.I. 1989. The construction of a highly efficient and versatile set of mammalian expression vectors. Nucl. Acids. Res. 17: 7110.

    Article  CAS  Google Scholar 

  22. Urlaub, G. and Chasin, L.A. 1980. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc. Natl. Acad. Sci. USA 77: 4216–4220.

    Article  CAS  Google Scholar 

  23. Birch, J.R., Boraston, R. and Wood, L. 1985. Bulk production of monoclonal antibodies in fermenters. Trends in Biotechnol. 3: 162–166.

    Article  Google Scholar 

  24. Kaufman, R.J., Wasley, L.C., Spiliotes, A.J., Gossels, S.D., Latt, S.A., Larsen, G.R. and Kay, R.M. 1985. Co-amplification and co-expression of human tissue type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells. Mol. Cell. Biol. 5: 1750–1759.

    Article  CAS  Google Scholar 

  25. Smith, R. 1986. An active-site titrant for human tissue-type plasminogen activator. Biochem. J. 239: 477–479.

    Article  CAS  Google Scholar 

  26. Whittle, N., Adair, J., Lloyd, C., Jenkins, E., Devine, J., Schlom, J., Raubitschek, A., Colcher, D. and Bodmer, M. 1987. Expression in COS cells of a mouse-human chimaeric B72.3 antibody. Protein Engineering 1: 449–505.

    Article  Google Scholar 

  27. Davis, S.J., Ward, H.A., Puklavec, M.J., Willis, A.C., Williams, A.F. and Barclay, A.N. 1990. High level expression in Chinese hamster ovary cells of soluble forms of CD4 T Lymphocyte glycoprotein including glycosylation variants. J. Biol. Chem. In Press.

    Google Scholar 

  28. Greenaway, P.J., Oram, J.D., Downing, R.G. and Patel, K. 1982. Human cytomegalovirus DNA: BamHI, EcoRI and Pst I restriction endonuclease cleavage maps. Gene 18: 355–360.

    Article  CAS  Google Scholar 

  29. Wigler, M., Pellicer, A., Silverstein, S. and Axel, R. 1978. Biochemical transfer of single eukaryotic genes using total cellular DNA donor. Cell 14: 725–731.

    Article  CAS  Google Scholar 

  30. Maniatis, T., Fritsch, E. and Sambrook, J. 1982. Molecular Cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor New york.

    Google Scholar 

  31. Minty, A.J., Caravatti, M., Robert, B., Cohen, A., Daubas, P., Weydert, A., Gros, F. and Buckingham, M.E. 1981. Mouse actin messenger RNA's. J. Biol. Chem. 256: 1008–1014.

    CAS  PubMed  Google Scholar 

  32. Melton, D.A., Krieg, P.A., Rebagliati, M.R., Maniatis, T., Zinn, K. and Green, M.R. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridisation probes from plasmids containing a bacteriophage SP6 promoter. Nucl. Acids. Res. 12: 7035–7056.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cockett, M., Bebbington, C. & Yarranton, G. High Level Expression of Tissue Inhibitor of Metalloproteinases in Chinese Hamster Ovary Cells Using Glutamine Synthetase Gene Amplification. Nat Biotechnol 8, 662–667 (1990). https://doi.org/10.1038/nbt0790-662

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0790-662

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing