Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Screening of Muteins Secreted by Yeast: Random Mutagenesis of Human Interleukin-2

Abstract

We have generated random variants of human interleukin-2 (hIL-2) and assayed them using a rapid method that is generally applicable to proteins secreted by yeast. Mutein screening is performed in three steps: (1) in vitro mutagenesis of the target gene and selection of mutant genes by a physical method, (2) insertion of mutant genes into a yeast secretion vector, followed by yeast transformation, and (3) biological assay of protein variants secreted by the transformants into the culture fluid. In this way, we produced and tested about 500 variants of hIL-2 for activity; 155 variants were found to be biologically inactive. Sequence analyses of genes encoding the inactive variants revealed residues essential for hIL-2 activity, including residues at the extreme C-terminus and within a C-terminal α-helix (helix E).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Knowles, J.R. 1987. Tinkering with enzymes: what are we learning? Science 236:1252–1258.

    Article  CAS  PubMed  Google Scholar 

  2. Wells, J.A. and Powers, D.B. 1986. In vivo formation and stability of engineered disulfide bonds in subtilisin. J. Biol. Chem. 261:6564–6570.

    CAS  PubMed  Google Scholar 

  3. Rosenberg, S., Barr, P.J., Najarian, R.C., and Hallewell, R.A. 1984. Synthesis in yeast of a functional oxidation-resistant mutant of human alpha-antitrypsin. Nature 312:77–80.

    Article  CAS  PubMed  Google Scholar 

  4. Pantoliano, M.W., Ladner, R.C., Bryan, P.N., Rollence, M.L., Wood, J.F. and Poulos, T.L. 1987. Protein engineering of subtilisin BPN': enhanced stabilization through the introduction of two cysteines to form a disulfide bond. Biochemistry 26:2077–2082.

    Article  CAS  PubMed  Google Scholar 

  5. Bryan, P.N., Rollence, M.L., Pantoliano, M.W., Wood, J., Finzel, B.C., Gilliland, G.L., Howard, A.J. and Poulos, T.L. 1986. Proteases of enhanced stability: characterization of a thermostable variant of subtilisin. Proteins 1:326–334.

    Article  CAS  PubMed  Google Scholar 

  6. Marcucci, F. and De Maeyer, E. 1986. An interferon analogue, [Ala30,32,33]HuIFN-α2, acting as a HuIFN-α2 antagonist on bovine cells. Biochim. Biophys. Res. Commun. 134:1412–1418.

    Article  CAS  Google Scholar 

  7. Wang, A., Lu, S.-D. and Mark, D.F. 1984. Site-specific mutagenesis of the human interleukin-2 gene: structure-function analysis of the cysteine residues. Science 224:1431–1433.

    Article  CAS  PubMed  Google Scholar 

  8. Myers, R.M., Lerman, L.S. and Maniatis, T. 1985. A general method for saturation mutagenesis of cloned DNA fragments. Science 229:242–247.

    Article  CAS  PubMed  Google Scholar 

  9. Smith, K.A. 1988. lnterleukin-2: Inception, impact, and implications. Science 240:1169–1176.

    Article  CAS  PubMed  Google Scholar 

  10. Liang, S-M., Thatcher, D.R., Liang, C-M. and Allet, B. 1986. Studies of structure-activity relationships of human interleukin-2. J. Biol. Chem. 261:334–337.

    CAS  PubMed  Google Scholar 

  11. Zurawski, S.M., Mosmann, T.R., Benedik, M. and Zurawski, G. 1986. Alterations in the ammo-terminal third of mouse interleukin 2: effects on biological activity and immunoreactivity. J Immunol. 137:3354–3360.

    CAS  PubMed  Google Scholar 

  12. Cohen, F.E., Kosen, P.A., Kuntz, I.D., Epstein, L.B., Ciardelli, T.L. and Smith, K.A. 1986. Strucutre-activity studies of interleukin-2. Science 234:349–352.

    Article  CAS  PubMed  Google Scholar 

  13. Miyaji, H., Nishi, T., Saito, A., Maeda, S., Shimada, K., Hirano, T., Onouc, K. and Itoh, S. 1987. Expression of mature human interleukin 2 and its derivatives in Escherichia coli and comparison of their biological activity in vitro. Agric. Biol. Chem. 51:1135–1142.

    CAS  Google Scholar 

  14. Ju, G., Collins, L., Kaffka, K.L., Tsien, W-H., T., Chizzonite, R., Crowl, R., Bhatt, R. and Kilian, P.L. 1987. Structure-function analysis of human interleukin-2. J. Biol. Chem. 262:5723–5731.

    CAS  PubMed  Google Scholar 

  15. Ciardelli, T.L., Landgraf, B., Gadski, R., Strnad, J., Cohen, F.E. and Smith, K.A. 1988. A design approach to the structural analysis of interleukin-2. J. Mol. Recog. 1:42–47.

    Article  CAS  Google Scholar 

  16. Weir, M.P., Chaplin, M.A., Wallace, D.M., Dykes, C.W. and Hobden, A.N. 1988. Structure-activity relationships of recombinant human interleukin 2. Biochemistry 27:6883–6892.

    Article  CAS  PubMed  Google Scholar 

  17. Zurawski, S.M. and Zurawski, G. 1988. Identification of three critical regions within mouse interleukin 2 by fine structural deletion analysis. EMBO J. 7:1061–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brandhuber, B.J., Boone, T., Kenney, W.C. and McKay, D.B. 1987. Three-dimensional structure of interleukin-2. Science 238:1707–1709.

    Article  CAS  PubMed  Google Scholar 

  19. Barr, P.J., Bleackley, R.C., Brake, A.J. and Merryweather, J.P. 1984. Yeast alpha-factor directed secretion of human interleukin-2 from a chemically synthesized gene. J Cell Biochem. Suppl. 8A:23

    Google Scholar 

  20. Ernst, J.F. 1986. Improved secretion of heterologous proteins by Saccharomyces cerevisiae: effects of promoter substitution in alpha-factor fusions. DNA 5:483–491.

    Article  CAS  PubMed  Google Scholar 

  21. Browning, J. and Mattaliano, R. 1986. Biologically active proteolytic fragments of interleukin-2. J. Cell. Biochem. Suppl. 10A:73.

    Google Scholar 

  22. Mosmann, T. 1983. Rapid colorimetic assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63.

    Article  CAS  PubMed  Google Scholar 

  23. Reidhaar-Olson, J.F. and Sauer, R.T. 1988. Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science 241:53–57.

    Article  CAS  PubMed  Google Scholar 

  24. Ernst, J.F., Hampsey, D.M., Stewart, J.W., Rackovsky, S., Goldstein, D. and Sherman, F. 1985. Substitutions of proline 76 in yeast iso-1-cytochrome c. J. Biol. Chem. 260:13225–13236.

    CAS  PubMed  Google Scholar 

  25. Kernpenaers, W. 1984. Ph.D. thesis. University of Gent, Belgium.

  26. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

  27. Ito, H., Fukuda, Y., Murata, K. and Kimura, A. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sherman, F., Fink, G. and Hicks, J. 1981. Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

  29. Levison, A., Silver, D. and Seed, B. 1984. Minimal size plasmids containing an M13 origin for production of single strand transducing particles. J. Mol. Appl. Genet. 2:507–517.

    Google Scholar 

  30. Towbin, A., Staehlin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. 76:4350–4354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, J., Richman, L. Screening of Muteins Secreted by Yeast: Random Mutagenesis of Human Interleukin-2. Nat Biotechnol 7, 716–720 (1989). https://doi.org/10.1038/nbt0789-716

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0789-716

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing